Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Freericks, J. K.

  • Google
  • 6
  • 7
  • 7

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (6/6 displayed)

  • 2022X-ray photoemission spectroscopy in the Falicov-Kimball modelcitations
  • 2018X-Ray Photoemission Spectroscopy in the Falicov-Kimball model ...citations
  • 2018X-Ray Photoemission Spectroscopy in the Falicov-Kimball modelcitations
  • 2012Exact solution of a variety of X-ray probes in the Falicov-Kimball model with dynamical mean-field theory4citations
  • 2012Exact solution of a variety of X-ray probes in the Falicov-Kimball model with dynamical mean-field theory ...citations
  • 2010Low-temperature transport properties of Ta<sub>x</sub>N thin films (0.72 ⩽ x ⩽ 0.83)3citations

Places of action

Chart of shared publication
Shvaika, Andrij
5 / 13 shared
Pakhira, Nandan
3 / 4 shared
Yu, Lei
1 / 4 shared
Nelson, Greg
1 / 1 shared
Očko, Miroslav
1 / 1 shared
Žonja, Sanja
1 / 1 shared
Newman, N.
1 / 15 shared
Chart of publication period
2022
2018
2012
2010

Co-Authors (by relevance)

  • Shvaika, Andrij
  • Pakhira, Nandan
  • Yu, Lei
  • Nelson, Greg
  • Očko, Miroslav
  • Žonja, Sanja
  • Newman, N.
OrganizationsLocationPeople

document

Exact solution of a variety of X-ray probes in the Falicov-Kimball model with dynamical mean-field theory

  • Shvaika, Andrij
  • Freericks, J. K.
Abstract

We examine the core-level X-ray photoemission spectroscopy (XPS), X-ray absorption near-edge spectroscopy (XANES) and X-ray emission spectroscopy (XES) in the Falicov-Kimball model by using the exact solution from dynamical mean-field theory. XPS measures the core-hole propagator, XANES measures the absorption of X-rays when the core electron is excited to an unoccupied electronic state of the solid and is not emitted, and XES measures the spectra of light emitted as electrons fill the core-hole state created via some form of X-ray excitation. These three spectra are closely related to one another and display orthogonality catastrophe behavior at T=0. We show an efficient way of evaluating these spectra at finite temperature, with a primary focus on the details of XANES. ; Дослiджуються рентґенiвськi спектри фотоелектронної емiсiї (XPS), передкрайового поглинання (XANES) та фотоемiсiї (XES) для моделi Фалiкова-Кiмбала, використовуючи точнi розв’язки теорiї динамiчного середнього поля. XPS вимiрює пропагатор дiрки йонного залишку, XANES — поглинання X-променiв, коли електрон йонного залишку збуджується в незаповнену електронну зону твердого тiла, i XES — спектр випромiненого свiтла при заповненнi електроном наперед створеної X-променями дiрки йонного залишку. Всi цi три типи спектрiв тiсно пов’язанi мiж собою i проявляють особливостi типу катастрофи ортогональ-ностi при T = 0. Показано, як ефективно розраховувати такi спектри для скiнчених температур, зокрема з детальнiшим наголосом на спектри XANES.

Topics
  • impedance spectroscopy
  • theory
  • x-ray photoelectron spectroscopy
  • X-ray emission spectroscopy