People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Steinbrück, Martin
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (35/35 displayed)
- 2024Decoding the oxidation mechanism of Zircaloy-4 via in situ synchrotron X-ray diffraction and computational elucidation
- 2024Phase formation, structure and properties of quaternary MAX phase thin films in the Cr-V-C-Al system: A combinatorial study
- 2023Synthesis of V2AlC thin films by thermal annealing of nanoscale elemental multilayered precursors : Incorporation of layered Ar bubbles and impact on microstructure formationcitations
- 2023Synthesis of V$_{2}$AlC thin films by thermal annealing of nanoscale elemental multilayered precursors: Incorporation of layered Ar bubbles and impact on microstructure formation
- 2023Nitriding model for zirconium based fuel cladding in severe accident codescitations
- 2023Analysis of iron-chromium-aluminum samples exposed to accident conditions followed by quench in the QUENCH-19 experiment
- 2022Phase formation and thermal stability of quaternary MAX phase thin films in the Cr-V-C-Al system: an experimental combinatorial study
- 2022The Effect of Annealing Temperature on the Microstructure and Properties of Cr–C–Al Coatings on Zircaloy-4 for Accident-Tolerant Fuel (ATF) Applicationscitations
- 2022Oxidation of silicon carbide composites for nuclear applications at very high temperatures in steamcitations
- 2022Results of metallographic analysis of the QUENCH-20 bundle with B4C absorber
- 2022Results of metallographic analysis of the QUENCH-20 bundle with B₄C absorber
- 2021Development of Cr-C-Al based coatings for enhanced accident tolerant fuel (ATF) zirconium-based alloy cladding
- 2021High-temperature oxidation and hydrothermal corrosion of textured Cr$_{2}$AlC-based coatings on zirconium alloy fuel cladding
- 2020High-Temperature Oxidation of Chrome-Nickel Alloycitations
- 2020Investigation of corrosion and high temperature oxidation of promising ATF cladding materials in the framework of the Il trovatore project
- 2018High-temperature interaction of oxygen-preloaded Zr1Nb alloy with nitrogencitations
- 2018H2 PERMEATION BEHAVIOR OF Cr2AlC AND Ti2AlC MAX PHASE COATED ZIRCALOY-4 BY NEUTRON RADIOGRAPHYcitations
- 2018H2 PERMEATION BEHAVIOR OF Cr2AlC AND Ti2AlC MAX PHASE COATED ZIRCALOY-4 BY NEUTRON RADIOGRAPHYcitations
- 2018Magnetron-sputtered Al-containing MAX phase carbide thin films and their application as oxidation-resistant coatings
- 2017High-temperature interaction of oxygen-preloaded Zr1Nb alloy with nitrogen
- 2017Nanocrystalline diamond protects Zr cladding surface against oxygen and hydrogen uptake : Nuclear fuel durability enhancementcitations
- 2017Lessons learned from the QUENCH-LOCA experiments
- 2017Update of the QUENCH program
- 2017UK Research in LOCA-Related Activities and Co-operation with the Karlsruhe Research Centre - A Historical Perspective
- 2016Oxidation and hydrogen uptake during high-temperature reaction of zirconium alloys in steam-nitrogen mixtures
- 2016High-temperature oxidation of SiC-Ta-SiC sandwich cladding tubes in GFR atmosphere
- 2013Results of the QUENCH-16 Bundle Experiment on Air Ingress (KIT Scientific Reports ; 7634)
- 2012Oxidation of zirconium alloys in mixed atmospheres containing nitrogen
- 2012Selected aspects of materials behavior during severe nuclear accidents in nuclear reactors
- 2012High-temperature oxidation and mutual interactions of materials during severe nuclear accidents
- 2012Separate effects experiments in the framework of the QUENCH program at KIT
- 2012Materials behavior during the early phase of a severe nuclear accident
- 2011Results of Severe Fuel Damage Experiment QUENCH-15 with ZIRLO cladding tubes. (KIT Scientific Reports ; 7576)
- 2010Separate-effects tests on the investigation of high-temperature oxidation behavior and mechanical properties of Zircaloy-2 to be used in the SFP PWR tests : Report prepared in the framework of the OECD/NEA SFP Project
- 2007Prototypical experiments on air oxidation of zircaloy-4 at high temperatures
Places of action
Organizations | Location | People |
---|
document
Separate effects experiments in the framework of the QUENCH program at KIT
Abstract
Separate-effects experiments in the framework of the QUENCH program at KIT Karlsruhe Institute of Technology, Institute for Applied Materials, Germany The most important accident management measure to terminate a severe accident transient in a Light Water Reactor (LWR) is the injection of water to cool the uncovered degraded core. Analysis of the TMI‑2 accident and results of various integral in-pile and out-of-pile experiments (CORA, LOFT, PHEBUS, PBF) have shown that before the water succeeds in cooling the fuel pins there could be an enhanced oxidation of the Zircaloy cladding and other core components that in turn causes a sharp increase in temperature, hydrogen production and fission product release. The QUENCH programme at Karlsruhe Institute of Technology (KIT) has been started 1996 to investigate hydrogen generation, material behaviour and bundle degradation during reflood. The series of integral bundle experiments (16 tests were performed so far) was supported by separate-effects tests (SET) and code analyses. The main objective of the programme is to deliver experimental and analytical data for the development of quench and related models and for the validation of SFD code systems. This paper presents the highlights of the separate-effects experiments conducted during the last decade at KIT, the former Research Centre Karlsruhe (FZK). The following topics will be touched: § Single-rod quench experiments § High-temperature oxidation of various cladding alloys, including advanced ones, in various atmospheres (steam, oxygen, nitrogen, air, mixtures) § Hydrogen absorption by zirconium alloys § Effect of steam starvation § Boron carbide absorber behaviour during severe accidents § Single-rod tests on AgInCd control rods § ZrO2 failure criteria and interaction of metal melt with zirconia (and urania). Oxidation of various materials is of special interest because it causes degradation of mechanical properties of structure materials and it can be additionally connected with the production of hydrogen and heat. So, the oxidation of zirconium alloy cladding is the main hydrogen source term during a severe accident. Furthermore, chemical interactions of the various core materials lead to liquefaction of core components at temperatures far below melting points of the single materials. For example, interactions between boron carbide absorber and stainless steel results in rapid melt formation at about 1250°C. Local melts may initiate early core degradation with release of fission products and further enhanced exothermal oxidation.