People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Rieth, Michael
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (58/58 displayed)
- 2024Additive manufacturing of novel complex tungsten components via electron beam melting: Basic properties and evaluation of the high heat flux behavior
- 2024In-Situ synchrotron investigation of elastic and tensile properties of oxide dispersion strengthened EUROFER97 steel for advanced fusion reactorscitations
- 2024Hydrogen diffusion and trapping in a cryogenic processed high-Cr ferrous alloy
- 2024Tungsten alloys R&D program at KIT
- 2023Microstructural insights into EUROFER97 batch 3 steels
- 2023Effect of neutron irradiation on tensile properties of advanced Cu-based alloys and composites developed for fusion applications
- 2022Effect of neutron irradiation on ductility of tungsten foils developed for tungsten-copper laminates
- 2022Effect of neutron irradiation on ductility of tungsten foils developed for tungsten-copper laminatescitations
- 2022Recent progress in the assessment of irradiation effects for in-vessel fusion materials: tungsten and copper alloyscitations
- 2021Microstructure and precipitation behavior of advanced RAFM steels for high-temperature applications on fusion reactorscitations
- 2021Impact of materials technology on the breeding blanket design – Recent progress and case studies in materials technologycitations
- 2021Technological Processes for Steel Applications in Nuclear Fusion
- 2021Additive manufacturing technologies for EUROFER97 components
- 2021Impact of materials technology on the breeding blanket design Recent progress and case studies in materials technologycitations
- 2020Elucidating the microstructure of tungsten composite materials produced by powder injection molding
- 2020The brittle-to-ductile transition in cold-rolled tungsten sheets: the rate-limiting mechanism of plasticity controlling the BDT in ultrafine-grained tungstencitations
- 2020The brittle-to-ductile transition in cold-rolled tungsten sheets: On the loss of room-temperature ductility after annealing and the phenomenon of 45° embrittlementcitations
- 2020The brittle-to-ductile transition in cold-rolled tungsten sheets: On the loss of room-temperature ductility after annealing and the phenomenon of 45° embrittlementcitations
- 2020The brittle-to-ductile transition in cold-rolled tungsten sheets: Contributions of grain and subgrain boundaries to the enhanced ductility after pre-deformation
- 2019Manufacturing, high heat flux testing and post mortem analyses of a W-PIM mock-upcitations
- 2019Long-term stability of the microstructure of austenitic ODS steel rods produced with a carbon-containing process control agent
- 2019Mechanical properties and microstructure characterization of Eurofer97 steel variants in EUROfusion program
- 2019High pulse number thermal shock testing of tungsten alloys produced by powder injection moldingcitations
- 2018Expanding the operation window of RAFM steels by optimized chemical compositions and heat treatments
- 2018Expanding the operation window of RAFM steels by optimized chemical compositions and heat treatments
- 2017Processing of complex near-net-shaped tungsten parts by PIM
- 2017Ductilisation of tungsten (W): Tungsten laminated compositescitations
- 2017Production, microstructure and mechanical properties of two different austenitic ODS steelscitations
- 2017Assessment of industrial nitriding processes for fusion steel applicationscitations
- 2017Plasma exposure of tungsten in the linear plasma device PSI-2 produced via powder injection molding
- 2017Rapid material development and processing of complex near-net-shaped parts by PIM
- 2015Improvement of RAFM steels through thermo-mechanical treatments
- 2015Mechanical and microstructural investigations of tungsten and doped tungsten materials produced via powder injection moldingcitations
- 2014Microstructural anisotropy of ferritic ODS alloys after different production routes
- 2014Virtuelle Material- und Prozessentwicklung am Beispiel der Konstrukturausbildung in Schweißnähten
- 2011Optimization and limitations of known DEMO divertor concepts
- 2011TEM study of mechanically alloyed ODS powder
- 2011Review on the EFDA programme on tungsten materials
- 2011Influence of thickness and notch on impact bending properties of pure tungsten plate material
- 2011Development of high performance materials for nuclear fusion power plants
- 2010Cost effective fabrication of a fail-safe first wall
- 2010Fracture behavior of tungsten materials and the impact on the divertor design in nuclear fusion power plants
- 2010Tungsten materials for structural divertor applications
- 2009Fe-Cr-V ternary alloy-based ferritic steels for high- and low-temperature applications
- 2008Diffusion weld study for test blanket module fabrication
- 2008Impact bending tests on selected tungsten materials
- 2008Fracture behaviour of tungsten materials depending on microstructure and surface fabrication
- 2008Mechanical properties of different refractory materials for nuclear fusion applications
- 2007Specific welds for test blanket modules
- 2005Present development status of EUROFER and ODS-EUROFER for application in blanket concepts
- 2005A steady-state creep model for the AISI 316 L(N) in the technically relevant stress range
- 2005Evaluation of the mechanical properties of W and W-1%La₂O₃ in view of divertor applications
- 2005Creep and recrystallization of pure and dispersion strengthened tungsten
- 2005A comprising steady-state creep model for the austenitic AISI 316 L(N) steel
- 2005Microstructure and mechanical properties of different EUROFER welds
- 2005Assessment of different welding techniques for joining EUROFER blanket components
- 2005Verification and validation experiments for atomistic modeling of FeCr alloys
- 2004Creep of the austenitic steel AISI 316 L(N). Experiments and models
Places of action
Organizations | Location | People |
---|
document
Development of high performance materials for nuclear fusion power plants
Abstract
Tungsten and tungsten alloys are currently considered as candidate materials for various divertor applications in future fusion reactors as well as for shielding the first wall. This is mainly due to their high temperature strength, good thermal conductivity, and comparably low activation under neutron irradiation. The main components where these materials could be applied are (1) plasma facing shields, (2) high temperature cooling structures, and (3) high temperature backbone/support structures. For the shields, tungsten is used as armour material (also due to its high sputter resistance) to protect the subjacent cooling structure. Depending on the plasma operation conditions in tokamaks the shielding surface temperatures might, on the one hand, well exceed 1800 °C, and on the other hand, drop down to the maximum operation temperature of the cooling structure, which is limitied for most tungsten materials to about 1200 °C due to recrystallization and loss of strength. The most important, and necessary, properties of the armour materials are therefore related to crack resistance under thermal shock load and resistance to irradiation damage in general. Obviously, the backbone/support structures should be made of steel which restricts its operation temperature to about 550 °C for conventional steels and to 700 °C or possibly above for ODS steels. Therefore, the cooling structures are expected to work within the temperature interval of about 450-1200 °C. In that temperature range the most critical requirements for possible structural tungsten materials are ductility, the creep strength, and resistance to recrystallization – all under severe neutron irradiation. The long-term objective of the European W and W alloys programme is to develop structural as well as armour materials in combination with the necessary production and fabrication technologies for future divertor concepts. The programmatic roadmap is structured into four engineering research parts which are (1) fabrication process development, (2) structural material development, (3) armour material optimisation, and (4) irradiation performance testing, which are complemented by a fundamental This paper presents the current research status of the work on the experimental and testing programme for divertor applications carried out in Europe under EFDA, and gives an overview on the mopst important results on tungsten alloys, mass fabrication, joining, plasticity and fracture mechanics. born in 1963, works as senior research scientist at the Institute of Applied Materials (IAM) at KIT, the Karlsruhe Institute of Technology, Germany, since 2002. He is the head of a consulting company (AIFT) since 1987. He worked as a researcher at the Institute of Materials Research II, to 1999 and at the Engineering Science Department of the University of Patras, Greece, from 1999 to 2000. He was product manager at AMA Systems, Pforzheim, Germany, from 2000 to 2001. He received his Master of Science degree in electrical engineering from the University of Karlsruhe in 1991 and his doctoral degree in physics from the University of Patras in 2001. Dr. Rieth was the editor-in-chief of the Journal of Computational and Theoretical Nanoscience from 2004 to 2005. He is the author of Nano-Engineering in Science and Technology (World Scientific, Singapore, 2003) and he is editor of the Handbook of Theoretical and Computational Nanotechnology (American Scientific Publishers, Stevenson Ranch, 2006). He further published several patents and book chapters. His main scientific interests are in materials development for advanced fusion reactor applications as well as modeling of metallic materials and nanosystems. Since 2008 he is co-chairing (together with Sergei Dudarev) the EFDA Topical Group on Fusion Materials. He also gives lectures in materials science at the University of Karlsruhe, at the Baden-Wuerttemberg Cooperative State University, and at summer schools.