Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Liebig, W. V.

  • Google
  • 1
  • 9
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Continuous Simulation of a Continuous-Discontinuous Fiber Reinforced Thermoplastic (CoDiCoFRTP) Compression Molding Processcitations

Places of action

Chart of shared publication
Krauß, Constantin
1 / 14 shared
Böhlke, Thomas
1 / 55 shared
Scheuring, Benedikt M.
1 / 6 shared
Blarr, Juliane
1 / 7 shared
Schreyer, Louis
1 / 4 shared
Kärger, Luise
1 / 86 shared
Weidenmann, K. A.
1 / 32 shared
Hrymak, Andrew
1 / 15 shared
Christ, Nicolas
1 / 4 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Krauß, Constantin
  • Böhlke, Thomas
  • Scheuring, Benedikt M.
  • Blarr, Juliane
  • Schreyer, Louis
  • Kärger, Luise
  • Weidenmann, K. A.
  • Hrymak, Andrew
  • Christ, Nicolas
OrganizationsLocationPeople

article

Continuous Simulation of a Continuous-Discontinuous Fiber Reinforced Thermoplastic (CoDiCoFRTP) Compression Molding Process

  • Krauß, Constantin
  • Böhlke, Thomas
  • Scheuring, Benedikt M.
  • Blarr, Juliane
  • Schreyer, Louis
  • Liebig, W. V.
  • Kärger, Luise
  • Weidenmann, K. A.
  • Hrymak, Andrew
  • Christ, Nicolas
Abstract

A virtual process chain for compression molded long fiber-reinforced thermoplastic (LFT) composites with co-molded continuous fiber-reinforced thermoplastics (CoFRTP) consisting of a compression molding and structural simulation step is established. The compression molding simulation considers the three-dimensional initial fiber orientation distribution of the semi-finished LFT plastificate and applies the Moldflow rotary diffusion (MRD) model to predict the reorientation of fibers. The predicted fiber orientations are compared to experimental results obtained from micro computed tomography (µCT) scans. The mapping step from molding to structural simulation allows the transfer of higher order anisotropy. Challenges in homogenizing the effective elastic material behavior of the direct (D-) LFT are discussed. The structural simulation is validated by means of coupon-level fourpoint bending tests on a D-LFT tape sandwich. The predicted bending stiffness shows higher accuracy if the mapped fiber orientation data are considered.

Topics
  • impedance spectroscopy
  • simulation
  • tomography
  • composite
  • bending flexural test
  • thermoplastic
  • compression molding