Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Blarr, Juliane

  • Google
  • 7
  • 30
  • 17

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (7/7 displayed)

  • 2024Continuous Simulation of a Continuous-Discontinuous Fiber Reinforced Thermoplastic (CoDiCoFRTP) Compression Molding Processcitations
  • 2024Crystallization and crystal morphology of polymers: A multiphase-field studycitations
  • 2024Deep convolutional generative adversarial network for generation of computed tomography images of discontinuously carbon fiber reinforced polymer microstructures6citations
  • 2023Implementation and comparison of algebraic and machine learning based tensor interpolation methods applied to fiber orientation tensor fields obtained from CT images11citations
  • 2023Continuous simulation of a continuous-discontinuous fiber-reinforced thermoplastic (CODICOFRTP) Compression molding processcitations
  • 2022Generation of Initial Fiber Orientation States for Long Fiber Reinforced Thermoplastic Compression Molding Simulationcitations
  • 2022Application of a Tensor Interpolation Method on the Determination of Fiber Orientation Tensors From Computed Tomography Imagescitations

Places of action

Chart of shared publication
Krauß, Constantin
4 / 14 shared
Böhlke, Thomas
2 / 55 shared
Scheuring, Benedikt M.
2 / 6 shared
Schreyer, Louis
3 / 4 shared
Liebig, W. V.
1 / 1 shared
Kärger, Luise
4 / 86 shared
Weidenmann, K. A.
1 / 32 shared
Hrymak, Andrew
1 / 15 shared
Christ, Nicolas
2 / 4 shared
Prahs, Andreas
1 / 6 shared
Liebig, Wilfried V.
4 / 29 shared
Schneider, Daniel
1 / 13 shared
Scheuring, Benedikt
1 / 1 shared
Weidenmann, Kay A.
1 / 29 shared
Nestler, Britta
1 / 105 shared
Denniston, Colin
1 / 1 shared
Afrasiabian, Navid
1 / 1 shared
Elmoghazy, Ahmed
1 / 1 shared
Weidenmann, Kay André
4 / 34 shared
Inal, Kaan
1 / 2 shared
Klinder, Steffen
1 / 1 shared
Liebig, Wilfried
1 / 6 shared
Inal, Kaan A.
1 / 1 shared
Sabiston, Trevor D.
1 / 1 shared
Bauer, Julian Karl
1 / 6 shared
Hrymak, Andrew Nick
1 / 2 shared
Meyer, Nils
1 / 24 shared
Höger, Katja
1 / 3 shared
Kresin, Noah
1 / 1 shared
Elsner, Peter
1 / 31 shared
Chart of publication period
2024
2023
2022

Co-Authors (by relevance)

  • Krauß, Constantin
  • Böhlke, Thomas
  • Scheuring, Benedikt M.
  • Schreyer, Louis
  • Liebig, W. V.
  • Kärger, Luise
  • Weidenmann, K. A.
  • Hrymak, Andrew
  • Christ, Nicolas
  • Prahs, Andreas
  • Liebig, Wilfried V.
  • Schneider, Daniel
  • Scheuring, Benedikt
  • Weidenmann, Kay A.
  • Nestler, Britta
  • Denniston, Colin
  • Afrasiabian, Navid
  • Elmoghazy, Ahmed
  • Weidenmann, Kay André
  • Inal, Kaan
  • Klinder, Steffen
  • Liebig, Wilfried
  • Inal, Kaan A.
  • Sabiston, Trevor D.
  • Bauer, Julian Karl
  • Hrymak, Andrew Nick
  • Meyer, Nils
  • Höger, Katja
  • Kresin, Noah
  • Elsner, Peter
OrganizationsLocationPeople

article

Continuous Simulation of a Continuous-Discontinuous Fiber Reinforced Thermoplastic (CoDiCoFRTP) Compression Molding Process

  • Krauß, Constantin
  • Böhlke, Thomas
  • Scheuring, Benedikt M.
  • Blarr, Juliane
  • Schreyer, Louis
  • Liebig, W. V.
  • Kärger, Luise
  • Weidenmann, K. A.
  • Hrymak, Andrew
  • Christ, Nicolas
Abstract

A virtual process chain for compression molded long fiber-reinforced thermoplastic (LFT) composites with co-molded continuous fiber-reinforced thermoplastics (CoFRTP) consisting of a compression molding and structural simulation step is established. The compression molding simulation considers the three-dimensional initial fiber orientation distribution of the semi-finished LFT plastificate and applies the Moldflow rotary diffusion (MRD) model to predict the reorientation of fibers. The predicted fiber orientations are compared to experimental results obtained from micro computed tomography (µCT) scans. The mapping step from molding to structural simulation allows the transfer of higher order anisotropy. Challenges in homogenizing the effective elastic material behavior of the direct (D-) LFT are discussed. The structural simulation is validated by means of coupon-level fourpoint bending tests on a D-LFT tape sandwich. The predicted bending stiffness shows higher accuracy if the mapped fiber orientation data are considered.

Topics
  • impedance spectroscopy
  • simulation
  • tomography
  • composite
  • bending flexural test
  • thermoplastic
  • compression molding