People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Wittemann, Florian
Karlsruhe Institute of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2024Anisotropic warpage prediction of injection molded parts with phenolic matrix
- 2024Initial stack placement strategies for carbon fiber- reinforced sheet molding compound (C-SMC)
- 2024Modeling Approach for Reactive Injection Molding of Polydisperse Suspensions with Recycled Thermoset Compositescitations
- 2023Numerical Study on Uncertainty Effects in Injection Molding
- 2023Fiber breakage modeling based on hydrodynamic forces in macroscopic process simulations
- 2022Fiber breakage modeling based on hydrodynamic forces in macroscopic process simulations
- 2022Fiber-dependent injection molding simulation of discontinuous reinforced polymers
- 2022Fiber-dependent injection molding simulation of discontinuous reinforced polymers
- 2022Influence of fiber breakage on flow behavior in fiber length- and orientation-dependent injection molding simulationscitations
- 2021Theoretical approximation of hydrodynamic and fiber-fiber interaction forces for macroscopic simulations of polymer flow process with fiber orientation tensorscitations
- 2019Simulation of Reinforced Reactive Injection Molding with the Finite Volume Method
- 2019Using openfoam for simulation of reactive injection molding as a non-isothermal compressible multiphase flow
- 2019Simulation of Discontinuous Fiber Reinforced Composites along the CAE-Chain
- 2019Injection Molding Simulation with Fiber Length Dependent Flow Modelling
- 2018Simulation of Reinforced Reactive Injection Molding with the Finite Volume Methodcitations
- 2018Evaluation of an Integral Injection Molded Housing for High Power Density Synchronous Machines with Concentrated Single-Tooth Windingcitations
- 2018Using openfoam for simulation of reactive injection molding as a non-isothermal compressible multiphase flow
- 2018Simulation of Discontinuous Fiber Reinforced Composites along the CAE-Chain
- 2018Simulation of reinforced reactive injection molding with the finite volume methodcitations
- 2017Modeling of the non-isothermal crystallization kinetics of polyamide 6 composites during thermoformingcitations
Places of action
Organizations | Location | People |
---|
conferencepaper
Fiber breakage modeling based on hydrodynamic forces in macroscopic process simulations
Abstract
Injection molding is one of the most important processes for manufacturing parts from discontinuous fiber reinforced polymers. Fiber length and orientation do not only influence the final structural behavior in an anisotropic way, but also the flow field and hence the mold filling process. Therefore, fiber length distribution and fiber breakage modeling are important aspects of an adequate process simulation. For fiber breakage modeling, hydrodynamic forces from matrix on fibers are considered within this work. Knowing the flow field and fiber orientation distributions of the homogenized material, flow-induced hydrodynamic forces on the fibers can be calculated. The fiber orientation tensor is used to determine reference fibers in every element. Based on this information an advanced approach for fiber breakage modelling is proposed. The fiber length distribution in the final part is compared to experimental data of a reactive injection molding process, showing good agreement.