People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Meyer, Nils
University of Augsburg
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (24/24 displayed)
- 2024Anisotropic warpage prediction of injection molded parts with phenolic matrix
- 2024Initial stack placement strategies for carbon fiber- reinforced sheet molding compound (C-SMC)
- 2024Inverse computation of local fiber orientation using digital image correlation and differentiable finite element computations
- 2022Experimental and Numerical Analysis of SMC Compression Molding in Confined Regions : A Comparison of Simulation Approaches
- 2022Probabilistic virtual process chain for process-induced uncertainties in fiber-reinforced composites
- 2022Generation of Initial Fiber Orientation States for Long Fiber Reinforced Thermoplastic Compression Molding Simulation
- 2022Non-isothermal direct bundle simulation of SMC compression molding with a non-Newtonian compressible matrixcitations
- 2022A Benchmark for Fluid-Structure Interaction in Hybrid Manufacturing: Coupled Eulerian-Lagrangian Simulation
- 2022Manufacturing Simulation of Sheet Molding Compound (SMC)
- 2022Mesoscale simulation of the mold filling process of Sheet Molding Compound
- 2022Experimental and Numerical Analysis of SMC Compression Molding in Confined Regions—A Comparison of Simulation Approachescitations
- 2021A sequential approach for simulation of thermoforming and squeeze flow of glass mat thermoplasticscitations
- 2021A Benchmark for Fluid-Structure Interaction in Hybrid Manufacturing: Coupled Eulerian-Lagrangian Simulation
- 2021Manufacturing Simulation of Sheet Molding Compound (SMC)
- 2021Modeling Short-Range Interactions in Concentrated Newtonian Fiber Bundle Suspensionscitations
- 2021Mesoscale simulation of the mold filling process of Sheet Molding Compound
- 2021How to combine plastics and light metals for forming processes and the influence of moisture content on forming behavior
- 2020Motivating the development of a virtual process chain for sheet molding compound compositescitations
- 2020Parameter Identification of Fiber Orientation Models Based on Direct Fiber Simulation with Smoothed Particle Hydrodynamics
- 2019Virtual process chain of sheet molding compound: Development, validation and perspectivescitations
- 2019Motivating the development of a virtual process chain for sheet molding compound compositescitations
- 2019Process Simulation of Sheet Molding Compound (SMC) using Direct Bundle Simulation
- 2019A revisit of Jeffery‘s equation - modelling fiber suspensions with Smoothed Particle Hydrodynamics
- 2018A revisit of Jeffery‘s equation - modelling fiber suspensions with Smoothed Particle Hydrodynamics
Places of action
Organizations | Location | People |
---|
document
Mesoscale simulation of the mold filling process of Sheet Molding Compound
Abstract
Sheet Molding Compounds (SMC) sind diskontinuierlich faserverstärkte Verbundwerkstoffe, die aufgrund ihrer Fähigkeit, Verbundbauteile mit langen Fasern zu geringen Kosten zu realisieren, weit verbreitet sind. Sie ermöglichen Funktionsintegration, wie etwa den Einsatz von Rippen oder metallischen Einsätzen, und können mit kontinuierlichen Kohlenstofffasern gemeinsam verarbeitet werden, um die Formbarkeit von SMC mit den überlegenen mechanischen Eigenschaften von kontinuierlichen Fasern zu kombinieren. Das Streben nach hochintegrierten und komplexeren SMC-Bauteilen erfordert jedoch ein tiefes Verständnis der Verarbeitungsmechanismen und deren Einfluss auf die Leistungsfähigkeit eines Bauteils. Prozesssimulationen adressieren diesen Punkt, indem sie mögliche Fertigungsfehler und Prozess- parameter vorhersagen. Diese Ergebnisse können nicht nur zur Prozessauslegung und zur Reduzierung von Trial-and-Error-Phasen genutzt werden, sondern auch für die anschließende Struktursimulation durch eine virtuelle Prozesskette.In dieser Arbeit wird die Prozesssimulation von SMC zunächst mit einem makroskopischen Referenzmodell auf Basis von Faserorientierungstensoren adressiert. Dies entspricht dem Stand der Forschung, aber die zugrundeliegenden Annahmen von geraden Fasern, die viel kürzer als jedes geometrische Merkmal sind, werden in anspruchsvollen SMC-Anwendungen oft verletzt. Dies führt zu der Hypothese, dass eine direkte Simulation einzelner Faserbündel erforderlich ist, um den SMC-Formfüllprozess komplexer Geometrien genau zu beschreiben. Basierend auf dieser Hypothese wird eine neuartige direkte Bündelsimulationsmethode (DBS) vorgeschlagen, die eine direkte Simulation auf Komponentenebene ermöglicht und dabei die Beobachtung nutzt, dass Faserbündel während des SMC Fließpressens oft in einer gebündelten Konfiguration verbleiben. Das entwickelte DBS Modell kann mit Patches kombiniert werden, um den Co-Molding-Prozess von SMC mit kontinuierlichen Faserverstärkungen zu simulieren. Daher wird ein Modell zur Beschreibung des Materialverhaltens von unidirektionalen Kohlenstofffaser-Patches einschließlich eines einfachen Schädigungsmodells zur Vorhersage von Defekten entwickelt.Die Parameter des makroskopischen Referenzmodells, des DBS-Modells und des Patch-Modells werden experimentell bestimmt. Dazu gehören die thermischen Eigenschaften des SMCs, die temperaturabhängige und ratenabhängige Viskosität der SMC-Paste, die Reibung an der Werkzeugwand sowie die Kompressibilität des SMCs. Ebenso werden die temperaturabhängigen und ratenabhängigen mechanischen Eigenschaften der Patches bestimmt, die jedoch große Streuungen zwischen den Proben und Chargen aufweisen.Schließlich werden die Modelle auf mehrere Validierungsfälle angewandt, um die Anwendbarkeit auf Komponentenebene zu bewerten. Die Beispiele zeigen eine gegenüber dem makroskopische Referenzmodell verbesserte Vorhersage der Faserarchitektur, insbesondere der Faserorientierung in der Nähe von Werkzeugwänden sowie der Vorhersage von Bindenähten und Fließmarken. Zusätzlich bietet das DBS Modell die Option, Krümmungen der Bündel vorherzusagen und den Faservolumenanteil zu berechnen, welche durch Mikro-Computertomographie, thermisch gravimetrische Analysen und Durchleuchtungsbilder validiert werden.