People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Maia, Joana
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2023Envelope systems with high solar reflectance by the inclusion of nanoparticles – an overview of the EnReflect Project
- 2023Assessment of Photocatalytic Nano-TiO2 Mortars' Behavior When Exposed to Simulated Indoor Conditions of Glazed Buildingscitations
- 2021Durability of a New Thermal Aerogel-Based Rendering System under Distinct Accelerated Aging Conditionscitations
- 2021Hygrothermal performance of a new thermal aerogel-based render under distinct climatic conditionscitations
- 2020In-Situ Tests on Silica Aerogel-Based Rendering Wallscitations
- 2018Evaluation of the hygrothermal properties of thermal rendering systemscitations
Places of action
Organizations | Location | People |
---|
report
Envelope systems with high solar reflectance by the inclusion of nanoparticles – an overview of the EnReflect Project
Abstract
<jats:p>High reflectance materials constitute an attractive idea to reduce cooling loads, which is crucial for attaining the Nearly Zero Energy Buildings goal, also presenting the benefit of broadening the range of colours applicable in building facades. The EnReflect project intended to re-design envelope systems by increasing their solar reflectance through nanotechnology. The main idea was to produce novel nanomaterial-based coatings with high near-infrared (NIR) reflectance by tuning their optical properties and testing their compatibility with typical insulation technologies such as ETICS. As such, this project focused on the synthesis of nanoparticles with improved NIR reflectance, the evaluation of the hygrothermal-mechanical behaviour of thermal insulation systems with the application of the improved coating solutions, the characterization of the more relevant material properties and the durability assessment. One of the main achievements was the development of a facile synthesis of a nanocomposite with improved performance in the NIR region that allowed the reflectance improvement of a dark-finishing coating. Also, the incorporation of such nanoparticles had a positive effect on keeping their optical properties after accelerated ageing cycles. The development of numerical simulations allowed the estimation of the maximum surface temperature in Mediterranean climates under different optical parameters. The study of the hygrothermal behaviour of thermal enhanced façades led to the development of a new durability assessment methodology which contributed to closing a standardization gap.</jats:p>