People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Niittymäki, Minna
Tampere University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (33/33 displayed)
- 2024Screening of suitable random copolymer polypropylene blends for HVDC cable insulationcitations
- 2024Characterization of Isotactic-Polypropylene-Based Compounds for HVDC Cable Insulationcitations
- 2023Molecular Layer Deposition of Polyurea on Silica Nanoparticles and Its Application in Dielectric Nanocompositescitations
- 2023Molecular Layer Deposition of Polyurea on Silica Nanoparticles and Its Application in Dielectric Nanocompositescitations
- 2022Biaxially oriented silica–polypropylene nanocomposites for HVDC film capacitorscitations
- 2022Biaxially oriented silica–polypropylene nanocomposites for HVDC film capacitors: morphology-dielectric property relationships, and critical evaluation of the current progress and limitationscitations
- 2022Biaxially oriented silica–polypropylene nanocomposites for HVDC film capacitors : morphology-dielectric property relationships, and critical evaluation of the current progress and limitationscitations
- 2021Dielectric performance of silica-filled nanocomposites based on miscible (PP/PP-HI) and immiscible (PP/EOC) polymer blendscitations
- 2021Dielectric performance of silica-filled nanocomposites based on miscible (PP/PP-HI) and immiscible (PP/EOC) polymer blendscitations
- 2021PP/PP-HI/silica nanocomposites for HVDC cable insulation : Are silica clusters beneficial for space charge accumulation?citations
- 2021Combining good dispersion with tailored charge trapping in nanodielectrics by hybrid functionalization of silicacitations
- 2021Combining good dispersion with tailored charge trapping in nanodielectrics by hybrid functionalization of silicacitations
- 2021PP/PP-HI/silica nanocomposites for HVDC cable insulation: Are silica clusters beneficial for space charge accumulation?citations
- 2021PP/PP-HI/silica nanocomposites for HVDC cable insulation:Are silica clusters beneficial for space charge accumulation?citations
- 2021Deposition of Ureido and Methacrylate Functionalities onto Silica Nanoparticles and Its Effect on the Properties of Polypropylene-Based Nanodielectricscitations
- 2021PP/PP-HI/silica nanocomposites for HVDC cable insulationcitations
- 2020Influence of polar and unpolar silica functionalization on the dielectric properties of PP/POE nanocompositescitations
- 2020Influence of polar and unpolar silica functionalization on the dielectric properties of PP/POE nanocompositescitations
- 2020Influence of polar and unpolar silica functionalization on the dielectric properties of PP/POE nanocompositescitations
- 2020Feasibility of Mini-Scale Injection Molding for Resource-Efficient Screening of PP-Based Cable Insulation Nanocompositescitations
- 2020From Laboratory to Industrial Scale : Comparison of Short- and Long-Term Dielectric Performance of Silica-Polypropylene Capacitor Filmscitations
- 2019Silica-Polypropylene Nanocomposites for Film Capacitorscitations
- 2019Silica-Polypropylene Nanocomposites for Film Capacitors: Structure–Property Studies and the Role of Biaxial Stretching Conditionscitations
- 2019Silica-Polypropylene Nanocomposites for Film Capacitors:Structure–Property Studies and the Role of Biaxial Stretching Conditionscitations
- 2018Effect of temperature and humidity on dielectric properties of thermally sprayed alumina coatingscitations
- 2017DC conduction and breakdown behavior of thermally sprayed ceramic coatingscitations
- 2016Differences in AC and DC large-area breakdown behavior of polymer thin filmscitations
- 2016Role of microstructure in dielectric properties of thermally sprayed ceramic coatingscitations
- 2015Electric field dependency of dielectric behavior of thermally sprayed ceramic coatingscitations
- 2015DC Dielectric Breakdown Behavior of Thermally Sprayed Ceramic Coatingscitations
- 2015Dielectric Breakdown Strength of Thermally Sprayed Ceramic Coatingscitations
- 2014Influence of humidity and temperature on the dielectric properties of thermally sprayed ceramic MgAl2O4 coatingscitations
- 2013Dielectric properties of HVOF sprayed ceramic coatingscitations
Places of action
Organizations | Location | People |
---|
conferencepaper
DC Dielectric Breakdown Behavior of Thermally Sprayed Ceramic Coatings
Abstract
Previous studies of dielectric properties of thermally sprayed insulating ceramic coatings are focused on linearly ramped dielectric breakdown strength as well as DC resistivity, relative permittivity and dielectric loss characterizations. However, reports of the effects of ramp rate or of any kind of long term stressing on the breakdown strength cannot be found in literature. The aim of this paper was to study the DC breakdown behavior of one type of HVOF sprayed alumina coating under different stresses. It can be concluded that the ramp rate of DC breakdown measurement has no remarkably influence on the breakdown strength. The breakdown behavior was also studied using step-by-step tests with two constant step voltages and step durations. The DC resistivity of the alumina coating showed strong dependence on the applied electric field. The resistivity behaved ohmicly below the field strength of ~0.5 V/µm and above ~8…12 V/µm, however, the resistivity decreased approximately three decades in the nonohmic region (0.5 V/µm). At electric field strengths above ~25 V/µm, the degradation started in the material leading to breakdown. However, when the step duration was longer (60 min), the degradation process started already slightly below the applied field of 25 V/µm.<br/><br/>