People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Nayebi, Behzad
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
- 2024On the synthesis and sintering behavior of a novel Mg-Ca alloy, Part II: Spark plasma sinteringcitations
- 2022On the synthesis and sintering behavior of a novel Mg-Ca alloy, Part I: Mechanical alloyingcitations
- 2019Kinetics of crystallization in 13.2Li 2 O-67.6SiO 2 -14.49Al 2 O 3 -3.3TiO 2 -0.4BaO-0.97ZnO glass ceramic powder: Part I: a model-free vs. model-fitting approachcitations
Places of action
Organizations | Location | People |
---|
article
On the synthesis and sintering behavior of a novel Mg-Ca alloy, Part II: Spark plasma sintering
Abstract
<jats:p>With the growing interest in lightweight materials, magnesium and its alloys have received substantial attention for replacing existing alloys. After investigating the mechanical alloying process of Mg-Ca alloys and determining the optimum parameters for milling in part I of this study, the current research aims to examine the second step: the sintering process. This study proposes the powder metallurgy method to process Mg-Ca alloy through the spark plasma sintering technique at 420 °C under an applied pressure of 38 MPa. Samples with different additives (starch or paraffin) were sintered for various dwell times (7 and 10 min) to determine the optimal mechanical and physical properties. To study the microstructure and phase composition of the sintered alloys, X-ray diffractometer (XRD), field scanning electron microscopy (FESEM), and X-ray energy dispersive spectroscopy (EDS) were utilized. Density measurement, compression test, and micro-hardness evaluation were also conducted for the physical and mechanical feathers analysis. The results indicated that samples with a dwell time of 10 min exhibited superior mechanical properties. Additionally, the starch-containing sample outperformed the paraffin-containing sample in both physical and mechanical properties.</jats:p>