Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bahmani, Ahmad

  • Google
  • 2
  • 4
  • 4

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024On the synthesis and sintering behavior of a novel Mg-Ca alloy, Part II: Spark plasma sintering1citations
  • 2022On the synthesis and sintering behavior of a novel Mg-Ca alloy, Part I: Mechanical alloying3citations

Places of action

Chart of shared publication
Nayebi, Behzad
2 / 3 shared
Golmohammadi, Parisa
2 / 2 shared
Saljooghi, Fatemeh
1 / 1 shared
Parvin, Nader
1 / 3 shared
Chart of publication period
2024
2022

Co-Authors (by relevance)

  • Nayebi, Behzad
  • Golmohammadi, Parisa
  • Saljooghi, Fatemeh
  • Parvin, Nader
OrganizationsLocationPeople

article

On the synthesis and sintering behavior of a novel Mg-Ca alloy, Part I: Mechanical alloying

  • Nayebi, Behzad
  • Saljooghi, Fatemeh
  • Bahmani, Ahmad
  • Parvin, Nader
  • Golmohammadi, Parisa
Abstract

<jats:p>A novel Mg-0.7Ca alloy was prepared by the mechanical alloying (MA) process. Different variables were examined in order to obtain the optimum sample with the best milling behavior and potential sinterability. The structural studies were carried out using X-ray Diffractometer (XRD) and scanning electron microscopy (SEM). Crystallite size and lattice strain of the milled samples were examined by Scherrer and Williamson-Hall methods in order to finalize the investigation.&#x0D; The optimum milling time was found to be 60 minutes. In addition, a starch-containing sample with a fraction of 2.5 weight percent seemed to have the best microstructural properties, based on SEM observations and crystallite size assessments. Due discussions about the effective phenomena during the mechanical alloying were also included.</jats:p>

Topics
  • scanning electron microscopy
  • x-ray diffraction
  • grinding
  • milling
  • sintering