Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

K., Bhat G.

  • Google
  • 4
  • 3
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2016A Review on Organic Materials for Optical Phase Conjugation & All-optical Switchescitations
  • 2015Comparative Study on Azo dye-doped Polymer Films for Optical Phase Conjugationcitations
  • 2011Study of nonlinear absorption in a dye doped polymer film due to frequency up-converted fluorescencecitations
  • 2011Nonlinear Absorption Studies of Disperse Orange Doped Polymer Filmcitations

Places of action

Chart of shared publication
Aithal, Shubhrajyotsna
3 / 10 shared
S., Aithal P.
4 / 6 shared
Aithal, Shubrajyotsna
1 / 5 shared
Chart of publication period
2016
2015
2011

Co-Authors (by relevance)

  • Aithal, Shubhrajyotsna
  • S., Aithal P.
  • Aithal, Shubrajyotsna
OrganizationsLocationPeople

article

Comparative Study on Azo dye-doped Polymer Films for Optical Phase Conjugation

  • Aithal, Shubhrajyotsna
  • S., Aithal P.
  • K., Bhat G.
Abstract

n this paper, we have studied the linear optical properties and nonlinear optical Phase Conjugation properties of two azo-dye-doped polymer films by considering organic dyes disperse orange (DO-25) and disperse yellow (DY-7) doped in a polymer matrixPolymethyl methacrylate methacrylic acid (PMMA-MA). The nonlinear optical phase conjugation properties are studied usingDegenerate Four-Wave Mixing set-up using 532 nm wavelength CW laser beam. The effect of dye concentration, the intensity of backward,forward pump, and the inter-beam angle between the probe and forward pump beam on phase conjugation reflectivity are also studied andcompared. ; Other ; {"references" : [ "[1] Y.R. Shen, The Principles of Nonlinear Optics, Wiley, New York, pp. 450, 1975.", "[2] C.R. Giuliano and L. D. Hess, “Nonlninear Absorption of Light: Optical Saturation of Electronic Transitions in Organic Molecules with High Intensity Laser Radiation”, IEEE J. Quant. Electron. QE-3, pp. 338- 367, 1967.", "[3] G.S. He, Y. Lx, Y.P. Chi, M. Li, and P. N. Prasad, “Studies of two-photon pumped frequency up-converted lasing properties of a new dye material,” J. Appl. Phys., 81, pp. 2529-2537, 1997.", "[4] P. V. Olga, J.H. Lim, D.J. Hagan, and E.W. Van Strayland, “Nonlinear light absorption of polymethine dyes in liquid and solid media,” J. Opt. Soc. Am. B, 15, pp. 802-809, 1998.", "[5] N. Mukherjee, A. Mukherjee, and B.A. Reinhardt, “Measurement of two-photon absorption cross sections of dye molecules doped in thin films of polymethylmethacrylate,” Appl .Phys. Lett., 70, pp.1524-1526, 1997.", "[6] J. W. Perry, in Nonlinear Optics of Organic Molecules and Polymers, eds. H. S. Nalwa and S. Miyata, ( CRC Press, Boca Raton, Fla., 1997), Chap. 13, pp.813-840.", "[7] R. A. Fisher, “Optical Phase Conjugation,” (Academic Press, New York, NY, USA), 1983, pp. 1-30.", "[8] A. Yariv, “ Phase conjugate optics and real-time holography,” IEEE J Quantum Electron. QE-14, 9 pp. 650 – 660, 1978.", "[9] M. H. Majles Ara, S. Mehrabani, and R. Malekfar, Phase Conjugation Using Four-Wave Mixing in Fast Green FCF Dye-Doped Gelatin Film, Advances in Nonlinear Optics, Volume 2009 (2009), Article ID 371974, 4 pages. 2009. doi:10.1155/2009/371974", "[10] H. Tanaka, A. Horikoshi, H. Fujiwara, and K. Nakagawa, “Phase conjugation in saturable absorbing dye films by degenerate four-wave mixing and holographic processes”, Optical Review 9, 3, pp. 106-111, 2002.", "[11] T. Geethakrishnan and P. K. Palanisamy, “Degenerate four wave mixing experiments in Methyl green dyedoped gelatin film,” Optik 117, 6, pp. 282-286, 2006.", "[12] R. A. Fisher, “Optical Phase Conjugation,” (Academic Press, New York, NY, USA) 1983, pp. 1-30.", "[13]M. Albota, D. Beljonne, J.W. Perry, G. Subramanium, and C. Xu., Science, 281, pp. 1653, 1998.", "[14] B. A. Reinhardt, L.L. Brott, S.J. Clarson, R. Kannan and A.G. Dillard, In Mater. Res. Soc. Sympo. Proc. 479, MRS, 1997, pp. 3-8.", "[15] S. Aithal, P. S. Aithal and N. G. Bhat, “Study of nonlinear absorption in a dye doped polymer film due to frequency up-converted fluorescence,” Proceedings of the International Conference on Laser, Material Science and Communication, India, ed. U. Chatterjee and P.K. Chakrabarti, ISBN : 978-93-80813-14-1 pp. 107-109, 2011.", "[16] T. Geethakrishnan and P. K. Palanisamy, Optical phaseconjugation in erioglaucine dye-doped thin film, Pramana - journal of physics, Vol. 66, No. 2, 2006, pp.473–478.", "[17] T. Geethakrishnan and P. K. Palanisamy, Demonstration of optical phase-conjugation in methyl green dye-doped thin film, American Journal of Applied Sciences, 2005, Vol.: 2, Issue: 8, pp. 1228-1231.", "[18] A. Miniewicz, S. Bartkiewicz, and J. Parka, Optical phase conjugation in dye-doped liquid crystal, Opt. Commun. 149, pp. 89–95, 1997.", "[19] C. V. Bindhu, S. S. Harilal, V. P. N. Nampoori, and C. P. G. Vallabhan, „„Studies of nonlinear absorption and aggregation in aqueous solutions of Rhodamine 6G using a transient thermal lens technique,‟‟ J. Phys. D, 32, pp. 407–411, 1999.", "[20] S. Aithal, P. S. Aithal and N. G. Bhat, Study of Degenerate Four-Wave Mixing in Disperse Orange Dyedoped Polymer Film, Advanced Materials Research Journal, ISSN: 1662-8985, Trans Tech Publications (TTP), Switzerland, Vol. 584, pp 526-530, doi:10.4028/www.scientific.net/AMR.584.526 (2012)." ]}

Topics
  • polymer
  • phase
  • experiment
  • thin film
  • Energy-dispersive X-ray spectroscopy
  • additive manufacturing
  • liquid crystal