Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Aithal, P. S.

  • Google
  • 8
  • 6
  • 88

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (8/8 displayed)

  • 2024AI Bedroomcitations
  • 2023Advances and New Research Opportunities in Quantum Computing Technology by Integrating it with Other ICCT Underlying Technologies67citations
  • 2023Association Between Delay, Project Size and Low Bid Percentage1citations
  • 2023Let Us Create an Alexa Skill for Our IoT Device Inside the AWS Cloud20citations
  • 2017Literature Review On Organic Materials For Third Harmonic Optical And Photonic Applicationscitations
  • 2017Research Opportunities For Use Of Organic Dye-Doped Polymers And Nanomaterials-Doped Polymers In Optoelectronics And Photonicscitations
  • 2016Type 1 & Type 2 Optical Limiting Studies In Disperse Orange-25 Dye-Doped Pmma-Ma Polymer Films Using Cw Lasercitations
  • 2016Study Of Low Power Degenerate Four-Wave Mixing In Disperse Yellow Dye-Doped Polymer Filmcitations

Places of action

Chart of shared publication
Chakraborty, Sudip
2 / 20 shared
Maharjan, Subhadra
1 / 1 shared
Mishra, A. K.
1 / 9 shared
Aithal, Shubhrajyotsna
1 / 10 shared
Bhat, G. K.
3 / 3 shared
Aithal, Shubrajyotsna
3 / 5 shared
Chart of publication period
2024
2023
2017
2016

Co-Authors (by relevance)

  • Chakraborty, Sudip
  • Maharjan, Subhadra
  • Mishra, A. K.
  • Aithal, Shubhrajyotsna
  • Bhat, G. K.
  • Aithal, Shubrajyotsna
OrganizationsLocationPeople

article

Research Opportunities For Use Of Organic Dye-Doped Polymers And Nanomaterials-Doped Polymers In Optoelectronics And Photonics

  • Aithal, Shubrajyotsna
  • Aithal, P. S.
Abstract

resently the major focus of research in nonlinear optical materials is diverted on three areas of interest which include (1) Optical switching for all-optical devices, (2) Optical limiting for the protection of Eyes and photo detectors, and (3) Optical phase conjugation. All-optical switches which can break the transmission speed limits of electro-optical, acousto-optical, thermo-optical, and micro-electro-mechanical switches, can function as effective tools to solve these problems. The third-order nonlinear optical (NLO) effect based all-optical switches can be used to control light to bring changes in refractive index and hence phase difference when signal light passes through the sample and thus carry out the function of “on” or “off’ of optical switches. Optical limiting is a process of controlling the intensity of laser beam beyond certain specified intensity and has applications in sensor and eye protection. Optical phase conjugation using degenerate four-wave mixing configuration has been demonstrated and analysed in many organic and inorganic materials using a light beam of pulsed or continuous-wave (CW) lasers. However, organic dyes, dye-doped polymer films, and nanomaterials-dopedpolymersshow many favourable chemical, physical and opticaldevice related issues necessary tomake an organic all-opticalswitch foroptoelectronic and Photonics. In this paper, we have suggested the use of organic dyes, dye-doped polymers, and nanomaterials-doped polymers for some of the new areas of further research and commercialization of the inventions. ; Other ; {"references": ["1. of the First International Workshop on Optical Power Limiting, in Nonlinear Optics 21, Guest Editor Francois Kajzar, (1999). 2. Optical Liquids and Power Limiters, (1997) Proceedings of SPIE 3146, (1998) 3472 and (1999) 3798, Editor C. W. Lawson. 3.,L. W. and Boggess, T. F. (1993) Prog. Quant. Electr., 17, 299. 4., J. W. in Nonlinear Optics of Organic Molecules and Polymers, eds. H. S. Nalwa and S. Miyata, ( CRC Press, Boca Raton, Fla., 1997), Chap. 13, pp.813-840. 5. Stryland, E. W. Soileau, M. J., Ross, S. and Hagan, D: J. (1999). Passive Optical Limiting: Where are we?, Nonl. Optics 21, p. 38. 6., B. L., Huston A. L., and Campillo, A. J. (1993). Broadband thermal optical limiter, Appl. Phys. Lett, 63, 1483. 7., P. A. (1994) Bottleneck optical limiters: the optimal use of excited-state absorbers, Appl. Opt., 33, 6965. 8., M. J., Mott, A. G. and Ketchel, B. P. (1998), Protection of optical systems against laser radiation, Proceeding of SPIE, 3472, 24. 9.,C. R.,and Hess, L. D. (1967). Nonlinear absorption of light: Optical saturation of electronic transitions in organic molecules with high intensity laser radiation, IEEE J. Quant. Electron., QE-3, 358. 10., M, & Girisun, T. S. (2015). Nonlinear optical absorption and optical limiting properties of cadmium ferrite. Materials Chemistry and Physics, 160, 413-419. 11., R.M., Meredith, G.R. & Trommsdorf, H.P. (1978). Resonant four wave mixing in molecular crystals, Chem.Phys. Lett, 53, 423-425. 12. Aithal, & Aithal, P. S., Bhat,G. K. (2016). Characteristics of Ideal Optical Limiter and Realization Scenarios using Nonlinear Organic MaterialsA Review.International Journal of Advanced Trends in Engineering and Technology (IJATET), 1(1), 73-84. DOI: http://doi.org/10.5281/ zenodo.240254. 13., M., Canva, M., Brun, A., Chaput, F., Malier, L., &Boilot, J. P. (1994). Doped Gels for Optical Limiting Applications. In MRS Proceedings (Vol. 374, p. 281).Cambridge University Press. 14., L., & Liu, H. K. (2003). Nonlinear optical limiting of the azo dye methyl-red doped nematic liquid crystalline films. Optical Engineering, 42(10), 2936-2941. 15., Z., Wenzhe, C., &Minquan, W. (2005). Study on the optical limiting mechanism of metallo-phthalocyanine/silica gel glass composites. Materials Letters, 59(11), 1395-1399. 16., H. L. (2016). Z-scan studies and optical limiting in a new organic-polymer composite film. Optical and Quantum Electronics, 48(1), 1-8. 17. Aithal, Aithal, P. S. and Bhat, G. K. (2016). CW Optical Limiting Study in Disperse Yellow Dye-doped PMMA-MA Polymer Films. IRA-International Journal of Applied Sciences, 5(3), 129-146. DOI: http://dx.doi.org/10.21013/jas.v5.n3.p4. 18. Aithal, Aithal, P. S. & Bhat, G. K. (2016).Type 1 & Type 2 Optical Limiting Studies in Disperse Orange-25 Dye-doped PMMA-MA Polymer Films using CW Laser.International Journal of Applied and Advanced Scientific Research (IJAASR), 1(1), 196-208. DOI: http://doi.org/10.5281/ zenodo.208184. 19. Aithal, & Aithal, P. S., Bh(...)

Topics
  • impedance spectroscopy
  • polymer
  • phase
  • glass
  • glass
  • composite
  • Energy-dispersive X-ray spectroscopy
  • Cadmium