Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Briva-Iglesias, Vicent

  • Google
  • 3
  • 4
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2021MEDDOPROF corpus: training setcitations
  • 2021MEDDOPROF guidelinescitations
  • 2021MEDDOPROF: Codes Reference Listcitations

Places of action

Chart of shared publication
Farré-Maduell, Eulàlia
3 / 3 shared
Miranda-Escalada, Antonio
3 / 3 shared
Lima-López, Salvador
3 / 3 shared
Krallinger, Martin
3 / 6 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Farré-Maduell, Eulàlia
  • Miranda-Escalada, Antonio
  • Lima-López, Salvador
  • Krallinger, Martin
OrganizationsLocationPeople

article

MEDDOPROF corpus: training set

  • Farré-Maduell, Eulàlia
  • Miranda-Escalada, Antonio
  • Lima-López, Salvador
  • Krallinger, Martin
  • Briva-Iglesias, Vicent
Abstract

The MEDDOPROF Shared Task tackles the detection of occupations and employment statuses in clinical cases in Spanish from different specialties. Systems capable of automatically processing clinical texts are of interest to the medical community, social workers, researchers, the pharmaceutical industry, computer engineers, AI developers, policy makers, citizen’s associations and patients. Additionally, other NLP tasks (such as anonymization) can also benefit from this type of data. MEDDOPROF has three different sub-tasks: 1) MEDDOPROF-NER: Participants must find the beginning and end of occupation mentions and classify them as PROFESION (PROFESSION) or SITUACION_LABORAL (WORKING_STATUS) 2) MEDDOPROF-CLASS: Participants must find the beginning and end of occupation mentions and classify them according to their referent (PACIENTE [patient], FAMILIAR [family member], SANITARIO [health professional] or OTRO [other]). 3) MEDDOPROF-NORM: Participants must find the beginning and end of occupation mentions and normalize them according to a reference codes list.MEDDOPROF is part of the IberLEF 2021 workshop, which is co-located with the SEPLN 2021 conference. For further information, please visit https://temu.bsc.es/meddoprof/ or email us at encargo-pln-life@bsc.es MEDDOPROF is promoted by the Plan de Impulso de las Tecnologías del Lenguaje de la Agenda Digital (Plan TL). UPDATE 22/04/21: A new version of the training data has been uploaded after detecting some minor errors in some of the annotations. Training data for Task 3 (MEDDOPROF-NORM) has also been added. Please make sure to download the latest version! Resources: - Web - Annotation Guidelines

Topics
  • impedance spectroscopy
  • laser absorption spectroscopy