Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Aithal, P. S.

  • Google
  • 8
  • 6
  • 88

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (8/8 displayed)

  • 2024AI Bedroomcitations
  • 2023Advances and New Research Opportunities in Quantum Computing Technology by Integrating it with Other ICCT Underlying Technologies67citations
  • 2023Association Between Delay, Project Size and Low Bid Percentage1citations
  • 2023Let Us Create an Alexa Skill for Our IoT Device Inside the AWS Cloud20citations
  • 2017Literature Review On Organic Materials For Third Harmonic Optical And Photonic Applicationscitations
  • 2017Research Opportunities For Use Of Organic Dye-Doped Polymers And Nanomaterials-Doped Polymers In Optoelectronics And Photonicscitations
  • 2016Type 1 & Type 2 Optical Limiting Studies In Disperse Orange-25 Dye-Doped Pmma-Ma Polymer Films Using Cw Lasercitations
  • 2016Study Of Low Power Degenerate Four-Wave Mixing In Disperse Yellow Dye-Doped Polymer Filmcitations

Places of action

Chart of shared publication
Chakraborty, Sudip
2 / 20 shared
Maharjan, Subhadra
1 / 1 shared
Mishra, A. K.
1 / 9 shared
Aithal, Shubhrajyotsna
1 / 10 shared
Bhat, G. K.
3 / 3 shared
Aithal, Shubrajyotsna
3 / 5 shared
Chart of publication period
2024
2023
2017
2016

Co-Authors (by relevance)

  • Chakraborty, Sudip
  • Maharjan, Subhadra
  • Mishra, A. K.
  • Aithal, Shubhrajyotsna
  • Bhat, G. K.
  • Aithal, Shubrajyotsna
OrganizationsLocationPeople

article

Type 1 & Type 2 Optical Limiting Studies In Disperse Orange-25 Dye-Doped Pmma-Ma Polymer Films Using Cw Laser

  • Bhat, G. K.
  • Aithal, Shubrajyotsna
  • Aithal, P. S.
Abstract

aterials with exceptional third order nonlinear optical properties are critical to the continuing development of photonics and electro-optical devices such as those used in optical communications, networking, optical computation for signal processing, and data storage devices. The nonlinear optical material research is generally focussed on improving the efficiency of optical wavelength conversion, optical amplification, nonlinear absorption, refractive index changes etc. which are input light intensity dependent. During last few years, the organic dye-doped polymer films are getting more attention due to their advantages in fabricatingoptimum photonics devices. In this paper, we have studied the nonlinear optical properties like nonlinear absorption and nonlinear refraction of an azo dye Disperse Orange-25 (DO-25) doped in Polymethyl methacrylate-methacrylic acid (PMMA-MA) polymer matrix using open aperture and closed aperture Z-scan experimental methods for continuous wave (CW) laser input. The optical limiting properties of these films are also studied using Type 1 and Type 2 configurations at different input power using continuous wave (CW) laser beams of 532 nm wavelength.The nonlinear absorption coefficient, nonlinear refractive index, and saturated output power for type 1 and type 2 optical limiting are determined. ; Other ; {"references": ["1., H. S., & Miyata, S. (1996). Nonlinear optics of organic molecules and polymers.CRC press. 2., J. D., He, G. S., & Prasad, P. N. (1996). Nonlinear multiphoton processes in organic and polymeric materials. Reports on Progress in Physics, 59(9), 1041. 3., A. J., & Saadon, H. L. (2013). Nonlinear optical and optical limiting properties of new structures of organic nonlinear optical materials for photonic applications. Chinese Optics Letters, 11(4), 041902. 4., J.W., Mansour, K., Mander, S.R., Perry, K. J., Alverez, D. & Choong, I. (1994). Enhanced reverse saturable absorption and optical limiting in heavy-atom-substituted phthalocyanines, Opt. Lett., 19, 625-627. 5., J. S., Pong, R. G., Flom, S. R., Heckmann, H., & Hanack, M. (2000). Effect of axial substitution on the optical limiting properties of indium phthalocyanines. The Journal of Physical Chemistry A, 104(7), 1438-1449. 6., W., Byrne, H., Dennis, W. M. and Kelly, J. M. (1985). Reverse Saturable absorption in tetraphenylporphyrines, Opt. Commun., 56, 25-29, 1985. 7., A., Ravikanth, M. and Kumar, G.R. (1996). Optical limiting in short chain basket handleporphyrins, Chem. Phys. Lett., 263, 241-246, 1996. 8., S., Mohan, D., & Ghoshal, S. K. (2008). Measurement of nonlinear properties and optical limiting ability of Rhodamine 6G doped silica and polymeric samples. Optics Communications, 281(10), 2923-2929. 9., J., Kozich, V.P. and Marcano, A.O. (1994). Thermal lensing resulting from one and two-photon absorption studied with a two color time-resolved Z-scan. Opt. Lett., 19, 171-173. 10., R. R., & Alkondan, R. (2010). Nonlinear characterization of Mercurochrome dye for potential application in optical limiting. Opt. Appl. XL, 187-196. 11., R. K., & Ramalingam, A. (2009). Nonlinear characteristic and optical limiting effect of oil red O azo dye in liquid and solid media. Journal of Modern Optics, 56(9), 1096-1102. 12., S., Kubo, T., Kurokawa, Y. and Suzuki, K. (1998). Third-order nonlinear optical properties of Disperse Red 1 and Au nanometer-size particle-doped alumina films prepared by sol-gel method.Thin Solid Film, 322, 233-237. 13., M. D., &Ajji, Z. (2011). Optical limiting behavior of disperse red 1 dye doped polymer. Optics & Laser Technology, 43(5), 934-937. 14., L. & Sargent, E. H. (2001). Azobenzenes for photonic network applications: Third nonlinear optical properties. J. Material Science: Materials in Electronics, 12, 483-489. 15., K., Manjunatha, K. B., Sujith, K. V., Umesh, G., Kalluraya, B., &Rao, V. (2012). Third order optical nonlinearity and optical limiting studies of propane hydrazides. Optical Materials, 34(11), 1751-1757. 16. Rao, S., Naga Srinivas, N.K.M. and Narayana Rao, D. (2002). Nonlinear absorption and excited state dynamics in Rhodamine B studied using Z-scan and degenerate four wave mixing techniques, Chem. Phys. Lett., 361, 439-445. 17. Tripathy, R., Justin Rajesh, R., Prem, B.B. & Subrahamanyam, (2002).Optical nonlinearity of organic dyes as studied by Z-scan and transient grating techniques.Procs. Indian Acad. Sci. (Chem. Sci.), 114(6), 557-564. 18., V. S., & Ramalingam, A. (2011). Third order optical nonlinearities and spectral characteristics of methylene blue. Journal of Quantum Information Sc(...)

Topics
  • impedance spectroscopy
  • polymer
  • Indium