Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bari, Md Abdullah Al

  • Google
  • 1
  • 3
  • 6

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Negative stiffness honeycomb structure as automobile leaf spring: A numerical investigation6citations

Places of action

Chart of shared publication
Islam, Md Shariful
1 / 2 shared
Anwar, Md Sayed
1 / 2 shared
Arnob, Fahim Faisal
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Islam, Md Shariful
  • Anwar, Md Sayed
  • Arnob, Fahim Faisal
OrganizationsLocationPeople

article

Negative stiffness honeycomb structure as automobile leaf spring: A numerical investigation

  • Islam, Md Shariful
  • Bari, Md Abdullah Al
  • Anwar, Md Sayed
  • Arnob, Fahim Faisal
Abstract

<jats:p>The leaf spring is one of the main components in an automobile which carries the weight of the vehicle and passenger as well as absorbs the vibration and shock produced due to road irregularities. The weight, natural frequency, stress developed, energy absorption, fatigue life, etc. are the key factors that need to be considered to design a leaf spring. Towards that, a novel design integrating a Negative Stiffness Honeycomb Structure (NSHS) in the leaf spring is proposed. The proposed design and the traditional leaf spring are analyzed using the commercially available Finite Element Method (FEM) software Abaqus. Both the traditional and NSHS models were created using Solidworks and modal, harmonic, structural, and transient analyses were performed. It is found that the natural frequency of the NSHS leaf spring is well above the frequency produced due to road irregularities although it is lower than the traditional spring. The total weight of the NSHS spring structure is reduced significantly by 30.73% compared to the traditional spring. Structural analysis shows a lower stress development and higher energy absorption capacity for the NSHS leaf spring. Transient analysis reveals lower mean stress in the proposed NSHS spring. The fatigue life is also found to be 82.78 % higher in the proposed design. The NSHS-incorporated novel leaf spring design may be an excellent alternative to the traditional leaf spring.</jats:p>

Topics
  • impedance spectroscopy
  • fatigue