Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Madyira, Daniel M.

  • Google
  • 2
  • 4
  • 5

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2021Microstructural, elemental, mechanical and structural attributes of aa1100/17-4 ph stainless steel composites fabricated via friction stir processing2citations
  • 2020Reduction of Excessive Flash in Friction Stir Processing of AA11003citations

Places of action

Chart of shared publication
Akinlabi, Esther Titilayo
2 / 235 shared
Pal, Surjya K.
1 / 6 shared
Majumdar, Jyotsna D.
1 / 2 shared
Marazani, Tawanda
2 / 2 shared
Chart of publication period
2021
2020

Co-Authors (by relevance)

  • Akinlabi, Esther Titilayo
  • Pal, Surjya K.
  • Majumdar, Jyotsna D.
  • Marazani, Tawanda
OrganizationsLocationPeople

article

Microstructural, elemental, mechanical and structural attributes of aa1100/17-4 ph stainless steel composites fabricated via friction stir processing

  • Akinlabi, Esther Titilayo
  • Pal, Surjya K.
  • Majumdar, Jyotsna D.
  • Marazani, Tawanda
  • Madyira, Daniel M.
Abstract

<p>A 100% overlap double pass friction stir process technique was developed for the fabrication of AA1100/17-4 PH stainless steel composites, using an H13 tool steel cylindrical threaded pin with shoulder diameter of 21 mm, pin diameter of 7 mm and pin height of 5 mm. Grooves of 2 mm width and 3.5 mm depth were machined on the 6 mm thick AA1100 plate, where the 17-4 PH stainless steel powder was packed and compacted using a pinless tool. Friction stir processing was conducted at rotational speeds of 2100, 2450 and 2800 rpm, while the travel speed of 20 mm/min, tilt angle of 2.5° and plunge depth of 0.2 mm, were kept constant. Investigations were carried out on the microstructure, elemental composition, and tensile testing and microhardness as well as structural analysis using X-ray diffraction. Defect-free micrographs with good mechanical and metallurgical connections were obtained from all the employed process parameters. However, agglomeration of reinforcements became noticeable at 2450 and 2800 rpm. Uniform distribution of reinforcements were observed at 2100 rpm. Elemental analysis confirmed matrix and reinforcements blending and mixing. Superior SZ hardness of as high as 4 times that of the base metal were achieved, while ultimate tensile strength properties with joint efficiencies as high as 97.29% were attained at 2450 rpm. However, the percentage elongation of the fabricated samples dropped by around 10% due to the reinforcements-induced hardness. Nonetheless, the fabrications retained superior mechanical properties. All the X-ray diffractograms had 5 intense peaks with different phases and crystal planes. However, an Al syn (111) crystal plane was common to all diffractograms at around 39° 2θ range. The obtained crystallite sizes of as small as 4 nm revealed the attainment of ultrafine grains, while the observed high dislocation densities and micro strains gave an indication that the fabricated AA1100/17-4 PH stainless steel composite is of high strength.</p>

Topics
  • impedance spectroscopy
  • grain
  • stainless steel
  • phase
  • x-ray diffraction
  • strength
  • composite
  • hardness
  • positron annihilation lifetime spectroscopy
  • Photoacoustic spectroscopy
  • dislocation
  • tool steel
  • tensile strength
  • elemental analysis