People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Olubanwo, Adegoke
Coventry University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2022Characteristics of a novel lightweight concretecitations
- 2020Potential and current distribution across different layers of reinforcement in reinforced concrete cathodic protection system- A numerical studycitations
- 2019Predicting the Corrosion Rate of Steel in Cathodically Protected Concrete Using Potential Shiftcitations
- 2018Finite Element Analysis of the Flexural behaviour of Steel-Reinforced GEM-TECH Cementitious Materialcitations
- 2018Investigation of intrinsic de-bonding in bonded concrete overlays: Material characterisation and numerical Studycitations
- 2018Strength and Hydraulic Conductivity of Cement and By - Product Cementitious Materials Improved Soil
- 2017Utilisation of waste cardboard and Nano silica fume in the production of fibre cement board reinforced by glass fibrescitations
- 2016Optimum design for sustainable, 'green' concrete overlays. Part III
- 2016Optimum Design for Sustainable, ‘Green’ Concrete Overlays. Part II: Shear Failure at Cracks and Inadequate Resistance to Reflection Cracking
- 2016Optimum Design for Sustainable, ‘Green’ Concrete Overlays. Part I: (a) Mix-Design, (b) Controlling Flexural Failure
- 2015Interfacial Delamination Failure in Bonded Concrete Overlay Systems - A Review of Theories and Modelling Methods
- 2015Applied mixture optimization techniques for paste design of bonded roller-compacted fibre reinforced polymer modified concrete (BRCFRPMC) overlayscitations
Places of action
Organizations | Location | People |
---|
article
Finite Element Analysis of the Flexural behaviour of Steel-Reinforced GEM-TECH Cementitious Material
Abstract
This paper presents a numerical investigation on the flexural performance of a novel cementitious reinforced GEM-TECH material using finite element method. A discrete nonlinear FE model using the commercial software ANSYS was employed to model a steel-reinforced GEM-TECH beam. Element SOLID65 was used to model the cementitious material while LINK180 element was used to model the reinforcing bars and stirrups. For model validation, FEA results and crack plots were compared to those obtained from the experimental results of five reinforced GEM-TECH beams: three beams designed with target density of 1810 kg/m3 and two beams with target density of 1600 kg/m3. Both load-deflection plots and the failure mode crack plots predicted by the FE model were in good agreement with the experimental results.