Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Karadelis, John

  • Google
  • 9
  • 12
  • 65

Coventry University

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (9/9 displayed)

  • 2018Green Pavement Overlays. Composite Beams on Elastic Foundation and their Numerical Representationcitations
  • 2018Investigation of intrinsic de-bonding in bonded concrete overlays: Material characterisation and numerical Study20citations
  • 2016Optimum design for sustainable, 'green' concrete overlays. Part IIIcitations
  • 2016Optimum Design for Sustainable, ‘Green’ Concrete Overlays. Part II: Shear Failure at Cracks and Inadequate Resistance to Reflection Crackingcitations
  • 2016Optimum Design for Sustainable, ‘Green’ Concrete Overlays. Part I: (a) Mix-Design, (b) Controlling Flexural Failurecitations
  • 2015Interfacial Delamination Failure in Bonded Concrete Overlay Systems - A Review of Theories and Modelling Methodscitations
  • 2015Applied mixture optimization techniques for paste design of bonded roller-compacted fibre reinforced polymer modified concrete (BRCFRPMC) overlays6citations
  • 2015Flexural strengths and fibre efficiency of steel-fibre-reinforced, roller-compacted, polymer modified concrete39citations
  • 2003Sustainable 'Green' Overlays for Strengthening and Rehabilitation of Concrete Pavements.citations

Places of action

Chart of shared publication
Xu, Yi
2 / 5 shared
Yougui, Lin
2 / 2 shared
Khorami, Morteza
1 / 29 shared
Abbey, Samuel
1 / 5 shared
Olubanwo, Adegoke
6 / 12 shared
Saidani, Messaoud
1 / 16 shared
Phillips, Paul
1 / 1 shared
Lin, Yougui
1 / 1 shared
Lin, Y.
2 / 24 shared
Xu, Y.
2 / 39 shared
Phillips, P.
2 / 2 shared
Koutselas, Konstantinos
1 / 1 shared
Chart of publication period
2018
2016
2015
2003

Co-Authors (by relevance)

  • Xu, Yi
  • Yougui, Lin
  • Khorami, Morteza
  • Abbey, Samuel
  • Olubanwo, Adegoke
  • Saidani, Messaoud
  • Phillips, Paul
  • Lin, Yougui
  • Lin, Y.
  • Xu, Y.
  • Phillips, P.
  • Koutselas, Konstantinos
OrganizationsLocationPeople

article

Investigation of intrinsic de-bonding in bonded concrete overlays: Material characterisation and numerical Study

  • Khorami, Morteza
  • Abbey, Samuel
  • Karadelis, John
  • Olubanwo, Adegoke
  • Saidani, Messaoud
Abstract

This study investigates the evolution of intrinsic interfacial de-bonding of Roller Compacted Steel Fibre Reinforced Polymer Modified Concrete (RC-SFR-PMC) bonded on substrate Ordinary Portland Cement Concrete (OPCC), using both experimental and numerical techniques. The relative effects of evolving material inhomogeneity and composite dimensional stability during curing was studied as a function of overlay structural scale, using a 2D plane strain Interface Cohesive Zone Model (ICZM). The effects of creep coefficient on interface restraint capacity and ensuing cohesive zone length were clearly evaluated. The results showed that the applied curvature due to the measured shrinkage strain was inadequate to cause critical de-bonding. In the FEA results, while the rate of interface energy release generally varies as a function of the bi-material relative stiffness and overlay structural scale, it is also evident that the two variables lose effects as the overlay structural scale approaches 0.50. The overall indicative trend shows that the rate of energy release in compliant overlay when relative stiffness( α<0) is higher than when α>0. Therefore, a more compliant overlay typically exhibits less relative restraint to bending induced de-bonding.

Topics
  • impedance spectroscopy
  • polymer
  • laser emission spectroscopy
  • steel
  • composite
  • cement
  • interfacial
  • finite element analysis
  • creep
  • curing