Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Leineweber, Sebastian

  • Google
  • 1
  • 6
  • 9

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022ADDITIVE MANUFACTURING AND VULCANIZATION OF CARBON BLACK–FILLED NATURAL RUBBER–BASED COMPONENTS9citations

Places of action

Chart of shared publication
Overmeyer, Ludger
1 / 54 shared
Bindszus, Lars
1 / 1 shared
Klie, Benjamin
1 / 2 shared
Wittek, Heike
1 / 1 shared
Giese, Ulrich
1 / 2 shared
Sundermann, Lion
1 / 1 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Overmeyer, Ludger
  • Bindszus, Lars
  • Klie, Benjamin
  • Wittek, Heike
  • Giese, Ulrich
  • Sundermann, Lion
OrganizationsLocationPeople

article

ADDITIVE MANUFACTURING AND VULCANIZATION OF CARBON BLACK–FILLED NATURAL RUBBER–BASED COMPONENTS

  • Overmeyer, Ludger
  • Bindszus, Lars
  • Klie, Benjamin
  • Wittek, Heike
  • Leineweber, Sebastian
  • Giese, Ulrich
  • Sundermann, Lion
Abstract

<jats:title>ABSTRACT</jats:title><jats:p>Additive manufacturing of thermoplastics or metals is a well-approved sustainable process for obtaining rapidly precise and individual technical components. Except for crosslinked silicone rubber or thermoplastic elastomers, there is no method of additive manufacturing of elastomers. Based on the development of the additive manufacturing of elastomers (AME) process, the material group of rubber-based cured elastomers may gain first access to the process field of three-dimensional (3D) printing. Printing and crosslinking of rubber is separated into two steps. In the first step, printing is realized by extrusion of the rubber by using a twin-screw extruder, which works according to the derived fused-filament-fabrication principle. In the second step, the component is vulcanized in a high-pressure hot-air autoclave. Because of the plastic flow behavior of non–crosslinked rubber materials, a thermoplastic shell is probably needed to maintain the geometry and position of the additively manufactured rubber. In this way, one layer of thermoplastic and one layer of rubber are printed alternatingly until the component is finished. Afterward, the manufactured binary component is placed in an autoclave to obtain the elastomer after vulcanization under a hot-air and high-pressure atmosphere. Then, the thermoplastic shell is removed from the elastomer and can subsequently be recycled. As compared with conventional thermoplastics, the high viscosity of rubber during processing and its instable shape after extrusion are challenging factors in the development of the AME. This contribution will show a modified 3D printer; explain the printing process from the designed component, via shell generation, to the vulcanized component; and show first printed components.</jats:p>

Topics
  • impedance spectroscopy
  • Carbon
  • extrusion
  • viscosity
  • thermoplastic
  • rubber
  • additive manufacturing
  • elastomer
  • thermoplastic elastomer