Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Samuel, O.

  • Google
  • 1
  • 4
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Investigation of Artifact Contamination Impact on EEG Oscillations Towards Enhanced Motor Function Characterizationcitations

Places of action

Chart of shared publication
Li, G.
1 / 31 shared
Asogbon, M. G.
1 / 1 shared
Meziane, Farid
1 / 4 shared
Li, Y.
1 / 95 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Li, G.
  • Asogbon, M. G.
  • Meziane, Farid
  • Li, Y.
OrganizationsLocationPeople

document

Investigation of Artifact Contamination Impact on EEG Oscillations Towards Enhanced Motor Function Characterization

  • Li, G.
  • Asogbon, M. G.
  • Samuel, O.
  • Meziane, Farid
  • Li, Y.
Abstract

The significant advancements in electroencephalography (EEG)-driven technology have led to its widespread use in assessing stroke-related conditions. Over the years, various studies have explored the potential of EEG oscillatory patterns in neurological research, with several of them giving limited attention to the signal processing techniques employed, precluding a proper understanding of EEG oscillatory patterns under various conditions. To resolve this issue, we systematically investigated how artifacts impact EEG oscillatory rhythms associated with upper limb movement-related tasks. Thus, the EEG signals of motor tasks were acquired non-invasively from healthy subjects and processed using automated artifact-attenuation methods. Subsequently, the Mu and Beta bands in the brain's motor cortex region were extracted through time-frequency analysis and analyzed using relevant metrics. Experimental results revealed that artifacts in EEG would substantially influence the brain activation strength and response during motor tasks. Notably, signals preprocessed with Reduction of Electroencephalographic Artifacts based on Multi Wiener Filter and Enhanced Wavelet Independent Component Analysis (RELAX_MWF_wICA) showed better brain responses and high task classification performance compared to other methods and the raw signal across motor tasks. This study's findings revealed that the choice of signal processing technique is crucial, as it would influence its analysis and interpretation, thus highlighting the need for careful consideration and usage.

Topics
  • impedance spectroscopy
  • strength
  • activation