People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Meziane, Farid
University of Derby
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2024Investigation of Artifact Contamination Impact on EEG Oscillations Towards Enhanced Motor Function Characterization
- 2023The Impact of Arabic Diacritization on Word Embeddingscitations
- 2021Natural Language Processing and Information Systems; 26th International Conference on Applications of Natural Language to Information Systems, NLDB 2021, Saarbrücken, Germany, June 23–25, 2021, Proceedingscitations
- 2015An architecture to support ultrasound report generation and standardisation
Places of action
Organizations | Location | People |
---|
document
Investigation of Artifact Contamination Impact on EEG Oscillations Towards Enhanced Motor Function Characterization
Abstract
The significant advancements in electroencephalography (EEG)-driven technology have led to its widespread use in assessing stroke-related conditions. Over the years, various studies have explored the potential of EEG oscillatory patterns in neurological research, with several of them giving limited attention to the signal processing techniques employed, precluding a proper understanding of EEG oscillatory patterns under various conditions. To resolve this issue, we systematically investigated how artifacts impact EEG oscillatory rhythms associated with upper limb movement-related tasks. Thus, the EEG signals of motor tasks were acquired non-invasively from healthy subjects and processed using automated artifact-attenuation methods. Subsequently, the Mu and Beta bands in the brain's motor cortex region were extracted through time-frequency analysis and analyzed using relevant metrics. Experimental results revealed that artifacts in EEG would substantially influence the brain activation strength and response during motor tasks. Notably, signals preprocessed with Reduction of Electroencephalographic Artifacts based on Multi Wiener Filter and Enhanced Wavelet Independent Component Analysis (RELAX_MWF_wICA) showed better brain responses and high task classification performance compared to other methods and the raw signal across motor tasks. This study's findings revealed that the choice of signal processing technique is crucial, as it would influence its analysis and interpretation, thus highlighting the need for careful consideration and usage.