Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mills, Benjamin

  • Google
  • 12
  • 31
  • 67

University of Southampton

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (12/12 displayed)

  • 2021Laser Induced Backwards Transfer (LIBT) of graphene onto glasscitations
  • 2020Microscale deposition of 2D materials via laser induced backwards transfercitations
  • 2020Automated 3D labelling of fibroblasts and endothelial cells in SEM-imaged placenta using deep learning6citations
  • 2019Automated 3D labelling of fibroblasts in SEM-imaged placenta using deep learningcitations
  • 2019Image-based monitoring of high-precision laser machining via a convolutional neural networkcitations
  • 2017Time-resolved imaging of flyer dynamics for femtosecond laser-induced backward transfer of solid polymer thin films28citations
  • 2017Laser fabricated nanofoam from polymeric substratescitations
  • 2015Dynamic spatial pulse shaping via a digital micromirror device for patterned laser-induced forward transfer of solid polymer films33citations
  • 2014Femtosecond multi-level phase switching in chalcogenide thin films for all-optical data and image processingcitations
  • 2013Printing of continuous copper lines using LIFT with donor replenishmentcitations
  • 2013Chalcogenide-based phase-change metamaterials for all-optical, high-contrast switching in a fraction of a wavelengthcitations
  • 2009Nanomaterial structure determination using XUV diffractioncitations

Places of action

Chart of shared publication
Eason, Robert W.
9 / 65 shared
Praeger, Matthew
4 / 18 shared
Mcdonnell, Michael
2 / 2 shared
Blundell, Sophie
2 / 2 shared
Xie, Yunhui
3 / 3 shared
Etter, Olivia
2 / 2 shared
Grant-Jacob, James A.
7 / 19 shared
Mackay, Benita
3 / 4 shared
Lewis, Rohan
2 / 2 shared
Heath, Daniel
2 / 3 shared
Heath, D.
1 / 1 shared
Gregorčič, P.
1 / 1 shared
Feinäugle, M.
2 / 6 shared
Heath, Daniel J.
1 / 1 shared
Feinäugle, Matthias
1 / 1 shared
Wang, Q.
1 / 19 shared
Hewak, Daniel W.
2 / 80 shared
Craig, Christopher
1 / 37 shared
Rogers, E. T. F.
1 / 1 shared
Macdonald, Kevin
2 / 12 shared
Maddock, Jonathan
1 / 1 shared
Hoppenbrouwers, M. B.
1 / 2 shared
Oosterhuis, G.
1 / 2 shared
Sones, Collin
1 / 6 shared
Maddock, J.
1 / 1 shared
Butcher, Tom
1 / 1 shared
Chapman, Richard
1 / 2 shared
Rogers, Edward T. F.
1 / 2 shared
Brocklesby, William
1 / 5 shared
Stebbings, Sarah
1 / 1 shared
Frey, Jeremy G.
1 / 1 shared
Chart of publication period
2021
2020
2019
2017
2015
2014
2013
2009

Co-Authors (by relevance)

  • Eason, Robert W.
  • Praeger, Matthew
  • Mcdonnell, Michael
  • Blundell, Sophie
  • Xie, Yunhui
  • Etter, Olivia
  • Grant-Jacob, James A.
  • Mackay, Benita
  • Lewis, Rohan
  • Heath, Daniel
  • Heath, D.
  • Gregorčič, P.
  • Feinäugle, M.
  • Heath, Daniel J.
  • Feinäugle, Matthias
  • Wang, Q.
  • Hewak, Daniel W.
  • Craig, Christopher
  • Rogers, E. T. F.
  • Macdonald, Kevin
  • Maddock, Jonathan
  • Hoppenbrouwers, M. B.
  • Oosterhuis, G.
  • Sones, Collin
  • Maddock, J.
  • Butcher, Tom
  • Chapman, Richard
  • Rogers, Edward T. F.
  • Brocklesby, William
  • Stebbings, Sarah
  • Frey, Jeremy G.
OrganizationsLocationPeople

document

Automated 3D labelling of fibroblasts and endothelial cells in SEM-imaged placenta using deep learning

  • Mcdonnell, Michael
  • Blundell, Sophie
  • Mills, Benjamin
  • Xie, Yunhui
  • Etter, Olivia
  • Grant-Jacob, James A.
  • Eason, Robert W.
  • Mackay, Benita
  • Praeger, Matthew
  • Lewis, Rohan
Abstract

Analysis of fibroblasts within placenta is necessary for research into placental growth-factors, which are linked to lifelong health and chronic disease risk. 2D analysis of fibroblasts can be challenging due to the variation and complexity of their structure. 3D imaging can provide important visualisation, but the images produced are extremely labour intensive to construct because of the extensive manual processing required. Machine learning can be used to automate the labelling process for faster 3D analysis. Here, a deep neural network is trained to label a fibroblast from serial block face scanning electron microscopy (SBFSEM) placental imaging.

Topics
  • impedance spectroscopy
  • scanning electron microscopy
  • machine learning