Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Plunder, Alexis

  • Google
  • 4
  • 9
  • 8

Bureau de Recherches Géologiques et Minières

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2020Relationship between microstructures and resistance in mafic assemblages that deform and transform4citations
  • 2020Relationship between microstructures and resistance in mafic assemblages that deform and transformcitations
  • 2020Relationship between microstructures and resistance in mafic assemblages that deform and transform4citations
  • 2017Can we apply the RSCM geothermometry approach to study the thermal history of a complex tectono-metamorphic context: the Jebilet massif (Variscan Belt, Morocco)?citations

Places of action

Chart of shared publication
Nègre, Lucille
2 / 5 shared
Mansard, Nicolas
2 / 2 shared
Précigout, Jacques
2 / 7 shared
Raimbourg, Hugues
2 / 7 shared
Stünitz, Holger
1 / 6 shared
Stunitz, Holger
1 / 5 shared
Michard, André
1 / 1 shared
Lahfid, Abdeltif
1 / 6 shared
Delchini, Sylvain
1 / 3 shared
Chart of publication period
2020
2017

Co-Authors (by relevance)

  • Nègre, Lucille
  • Mansard, Nicolas
  • Précigout, Jacques
  • Raimbourg, Hugues
  • Stünitz, Holger
  • Stunitz, Holger
  • Michard, André
  • Lahfid, Abdeltif
  • Delchini, Sylvain
OrganizationsLocationPeople

article

Relationship between microstructures and resistance in mafic assemblages that deform and transform

  • Plunder, Alexis
Abstract

<jats:p>Abstract. Syn-kinematic mineral reactions play an important role for the mechanical properties of polymineralic rocks. Mineral reactions (i.e. nucleation of new phases) may lead to grain size reduction producing fine-grained polymineralic mixtures, which have a strongly reduced viscosity because of the activation of grain-size sensitive deformation processes. In order to study the effect of deformation-reaction feedback(s) on sample strength, we performed rock deformation experiments on wet assemblages of mafic compositions in a Griggs-type solid-medium deformation apparatus. Shear strain was applied at constant strain rate (10−5 s−1) and constant confining pressure (1 GPa) with temperatures ranging from 800 to 900 °C. At low shear strain, the assemblages that react faster are significantly weaker than the ones that react more slowly, demonstrating that reaction progress has a first-order control on rock strength. With increasing strain, we document two contrasting microstructural scenarios: (1) the development of a single through-going high-strain-zone of well-mixed, fine-grained aggregates, associated with a significant weakening after peak stress and (2) the development of partially connected, nearly monomineralic shear bands without major weakening. The lack of weakening is caused by the absence of interconnected well-mixed aggregates of fine-grained reaction products. The nature of the reaction products, and hence the intensity of the mechanical weakening, is controlled by the microstructures of the reaction products to a large extent, e.g., the amount of amphibole and the phase distribution of reaction products. The samples with the largest amount of amphibole exhibit a larger grain size and show less weakening. In addition to their implications for the deformation of natural shear zones, our findings demonstrate that the feedback between deformation and mineral reactions can lead to large differences in mechanical strength, even at relatively small initial differences in mineral composition.</jats:p>

Topics
  • impedance spectroscopy
  • mineral
  • grain
  • grain size
  • phase
  • experiment
  • laser emission spectroscopy
  • strength
  • viscosity
  • activation