Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Nieto, Fernando

  • Google
  • 1
  • 8
  • 7

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020Deciphering the metamorphic evolution of the Pulo do Lobo metasedimentary domain (SW Iberian Variscides)7citations

Places of action

Chart of shared publication
Pérez-Cáceres, Irene
1 / 1 shared
Simancas, José Fernando
1 / 1 shared
Beyssac, Olivier
1 / 2 shared
Vidal, Olivier
1 / 2 shared
Azor, Antonio
1 / 1 shared
Poyatos, David Jesús Martínez
1 / 1 shared
Martínez Poyatos, David Jesús
1 / 1 shared
Bourdelle, Franck
1 / 6 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Pérez-Cáceres, Irene
  • Simancas, José Fernando
  • Beyssac, Olivier
  • Vidal, Olivier
  • Azor, Antonio
  • Poyatos, David Jesús Martínez
  • Martínez Poyatos, David Jesús
  • Bourdelle, Franck
OrganizationsLocationPeople

article

Deciphering the metamorphic evolution of the Pulo do Lobo metasedimentary domain (SW Iberian Variscides)

  • Pérez-Cáceres, Irene
  • Simancas, José Fernando
  • Beyssac, Olivier
  • Vidal, Olivier
  • Azor, Antonio
  • Nieto, Fernando
  • Poyatos, David Jesús Martínez
  • Martínez Poyatos, David Jesús
  • Bourdelle, Franck
Abstract

<jats:p>Abstract. The Pulo do Lobo domain is one of the units exposed within the orogenic suture zone between the Ossa-Morena and the South Portuguese zones in the SW Iberian Variscides. This metasedimentary unit has been classically interpreted as a Rheic subduction-related accretionary prism formed during pre-Carboniferous convergence and eventual collision between the South Portuguese Zone (part of Avalonia) and the Ossa-Morena Zone (peri-Gondwanan terrane). Discrete mafic intrusions also occur within the dominant Pulo do Lobo metapelites, related to an intra-orogenic Mississippian transtensional and magmatic event that had a significant thermal input. Three different approaches have been applied to the Devonian–Carboniferous phyllites and slates of the Pulo do Lobo domain in order to study their poorly known low-grade metamorphic evolution. X-ray diffraction (XRD) was used to identify the mineralogy and measure crystallographic parameters (illite “crystallinity” and K-white mica b-cell dimension). Compositional maps of selected samples were obtained from electron probe microanalysis, which allowed for processing with XMapTools software, and chlorite semiempirical and thermodynamic geothermometry was performed. Thermometry based on Raman spectroscopy of carbonaceous material (RSCM) was used to obtain peak temperatures. The microstructural study shows the existence of two phyllosilicate growth events in the chlorite zone, the main one (M1) related to the development of a Devonian foliation S1 and a minor one (M2) associated with a crenulation cleavage (S2) developed in middle–upper Carboniferous times. M1 entered well into epizone (greenschist facies) conditions. M2 conditions were at lower temperature, reaching the anchizone–epizone boundary. These data accord well with the angular unconformity that separates the Devonian and Carboniferous formations of the Pulo do Lobo domain. The varied results obtained by the different approaches followed, combined with microstructural analysis, provide different snapshots of the metamorphic history. Thus, RSCM temperatures are higher in comparison with the other methods applied, which is interpreted to reflect a faster re-equilibration during the short-lived thermal Mississippian event. Regarding the metamorphic pressure, the data are very homogeneous: very low celadonite content (0 %–10 %) in muscovite (and low values of K-white mica b-cell dimension; 8.995 Å mean value), indicating a low pressure–temperature gradient, which is unexpected in a subduction-related accretionary prism.HighlightsA multidisciplinary approach has been applied to study the metamorphism of the Pulo do Lobo metapelites. Devonian metamorphism entered epizone conditions. Carboniferous metamorphism reached the anchizone–epizone boundary. The inferred low-pressure gradient is incompatible with a subduction-related accretionary prism.</jats:p>

Topics
  • impedance spectroscopy
  • x-ray diffraction
  • crystallinity