People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bobillier, Grégoire
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2024Numerical investigation of crack propagation regimes in snow fracture experimentscitations
- 2024Supershear crack propagation in snow slab avalanche release: new insights from numerical simulations and field measurementscitations
- 2023Temporal evolution of crack propagation characteristics in a weak snowpack layer: conditions of crack arrest and sustained propagationcitations
- 2023Temporal evolution of crack propagation characteristics in a weak snowpack layer: conditions of crack arrest and sustained propagationcitations
- 2022Crack propagation speeds in weak snowpack layerscitations
- 2022Crack propagation speeds in weak snowpack layerscitations
- 2022Transition from sub-Rayleigh anticrack to supershear crack propagation in snow avalanchescitations
- 2022Temporal evolution of crack propagation characteristics in a weak snowpack layer: conditions of crack arrest and sustained propagationcitations
- 2021Dynamic crack propagation in weak snowpack layers: insights from high-resolution, high-speed photographycitations
- 2021Dynamic crack propagation in weak snowpack layers: insights from high-resolution, high-speed photographycitations
- 2021Micro-mechanical insights into the dynamics of crack propagation in snow fracture experimentscitations
- 2020Micromechanical modeling of snow failurecitations
- 2020Micromechanical modeling of snow failurecitations
Places of action
Organizations | Location | People |
---|
document
Supershear crack propagation in snow slab avalanche release: new insights from numerical simulations and field measurements
Abstract
The release process of dry-snow slab avalanches begins with a localized failure within a porous, weak snow layer that lies beneath a cohesive slab. Subsequently, rapid crack propagation may occur within the weak layer, eventually leading to a tensile fracture across the slab, resulting, if the slope is steep enough, to its detachment and sliding. The dynamics of crack propagation is believed to influence the size of the release area. However, the relationship between crack propagation dynamics and avalanche size remains incompletely understood. Notably, crack propagation speeds estimated from avalanche video analysis are almost one order of magnitude larger than speeds typically measured in field experiments. To shed more light on this discrepancy and avalanche release processes, we used discrete (DEM: discrete element method) and continuum (MPM: material point method) numerical methods to simulate the so-called propagation saw test (PST). On low angle terrain, our models showed that the weak layer failed mainly due to a compressive stress peak at the crack tip induced by weak layer collapse and the resulting slab bending. On steep slopes, we observed the emergence of a supershear crack propagation regime: the crack speed becomes higher than the slab shear wave speed. This transition occurs if the crack propagates over a distance larger than the super-critical crack length (approximately 5 m). Above the super-critical crack length, the fracture is mainly driven by the slope-parallel gravitational pull of the slab (tension) and, thus, shear stresses in the weak layer. These findings represent an essential additional piece in the dry-snow slab avalanche formation puzzle.