Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Grussenmeyer, P.

  • Google
  • 2
  • 3
  • 14

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2012RECONSTRUCTION OF 3D VECTOR MODELS OF BUILDINGS BY COMBINATION OF ALS, TLS AND VLS DATA12citations
  • 2012ASSESSMENT OF THREE-DIMENSIONAL MODELS DERIVED FROM LIDAR AND TLS DATA2citations

Places of action

Chart of shared publication
Boulaassal, Hakim
2 / 2 shared
Landes, T.
2 / 3 shared
Mohamed, M.
1 / 4 shared
Chart of publication period
2012

Co-Authors (by relevance)

  • Boulaassal, Hakim
  • Landes, T.
  • Mohamed, M.
OrganizationsLocationPeople

article

ASSESSMENT OF THREE-DIMENSIONAL MODELS DERIVED FROM LIDAR AND TLS DATA

  • Boulaassal, Hakim
  • Mohamed, M.
  • Landes, T.
  • Grussenmeyer, P.
Abstract

<jats:p>Abstract. This paper suggests the use of specific methods for assessing the geometry of 3D building models, by considering models extracted automatically from terrestrial laser scanning (TLS) data and aerial laser scanning (ALS) data. Well known quality factors have been applied for assessing roofs and façades separately. A projection into 2D makes sense in this case, because currently, 3D models or point clouds of façades are often projected into 2D for generating 2D façade maps, as required in the building trades. For assessing roofs in 3D, error maps have been suggested especially for analysing the spatial distribution of plane adjustment errors which might affect the final reconstructed 3D model. For assessing 3D building vector models as one object, first experiments based on volumetric quality factors are presented. This approach is based on ratios inspired from quality factors that have already proven themselves in the literature for comparing surface areas. The volumes considered here are computed on vector models (faceted solids) and not voxels. Further investigations are necessary on the one hand, for testing the sensitivity of these factors. On the other hand, the approach must be completed by criteria allowing the detection of shape differences, independently of the building volume.</jats:p>

Topics
  • impedance spectroscopy
  • surface
  • experiment