Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Luehrs, Sebastian

  • Google
  • 1
  • 9
  • 4

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2018A run control framework to streamline profiling, porting, and tuning simulation runs and provenance tracking of geoscientific applications4citations

Places of action

Chart of shared publication
Kulkarni, Ketan
1 / 1 shared
Naz, Bibi
1 / 1 shared
Goergen, Klaus
1 / 1 shared
Geimer, Markus
1 / 1 shared
Sharples, Wendy
1 / 2 shared
Breuer, Thomas
1 / 2 shared
Zhukov, Ilya
1 / 3 shared
Brdar, Slavko
1 / 1 shared
Kollet, Stefan
1 / 1 shared
Chart of publication period
2018

Co-Authors (by relevance)

  • Kulkarni, Ketan
  • Naz, Bibi
  • Goergen, Klaus
  • Geimer, Markus
  • Sharples, Wendy
  • Breuer, Thomas
  • Zhukov, Ilya
  • Brdar, Slavko
  • Kollet, Stefan
OrganizationsLocationPeople

article

A run control framework to streamline profiling, porting, and tuning simulation runs and provenance tracking of geoscientific applications

  • Kulkarni, Ketan
  • Naz, Bibi
  • Luehrs, Sebastian
  • Goergen, Klaus
  • Geimer, Markus
  • Sharples, Wendy
  • Breuer, Thomas
  • Zhukov, Ilya
  • Brdar, Slavko
  • Kollet, Stefan
Abstract

<jats:p>Abstract. Geoscientific modeling is constantly evolving, with next-generation geoscientific models and applications placing large demands on high-performance computing (HPC) resources. These demands are being met by new developments in HPC architectures, software libraries, and infrastructures. In addition to the challenge of new massively parallel HPC systems, reproducibility of simulation and analysis results is of great concern. This is due to the fact that next-generation geoscientific models are based on complex model implementations and profiling, modeling, and data processing workflows. Thus, in order to reduce both the duration and the cost of code migration, aid in the development of new models or model components, while ensuring reproducibility and sustainability over the complete data life cycle, an automated approach to profiling, porting, and provenance tracking is necessary. We propose a run control framework (RCF) integrated with a workflow engine as a best practice approach to automate profiling, porting, provenance tracking, and simulation runs. Our RCF encompasses all stages of the modeling chain: (1) preprocess input, (2) compilation of code (including code instrumentation with performance analysis tools), (3) simulation run, and (4) postprocessing and analysis, to address these issues. Within this RCF, the workflow engine is used to create and manage benchmark or simulation parameter combinations and performs the documentation and data organization for reproducibility. In this study, we outline this approach and highlight the subsequent developments scheduled for implementation born out of the extensive profiling of ParFlow. We show that in using our run control framework, testing, benchmarking, profiling, and running models is less time consuming and more robust than running geoscientific applications in an ad hoc fashion, resulting in more efficient use of HPC resources, more strategic code development, and enhanced data integrity and reproducibility.</jats:p>

Topics
  • impedance spectroscopy
  • simulation
  • laser emission spectroscopy