Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Boev, Ivan

  • Google
  • 2
  • 11
  • 8

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2021Ardennite-bearing mineral association related to sulfide-free ores with chalcophile metals at Nežilovo, Pelagonian Massif, North Macedonia1citations
  • 2019Effect Of Thermal Treatment Of Trepel At Temperature Range 800-1200˚C7citations

Places of action

Chart of shared publication
Bermanec, Vladimir
1 / 1 shared
Chukanov, Nikita V.
1 / 2 shared
Zebec, Vladimir
1 / 1 shared
Šturman, Božidar Darko
1 / 1 shared
Bermanec, Marko
1 / 1 shared
Pavlovski, Blagoj
1 / 1 shared
Reka, Arianit A.
1 / 1 shared
Makreski, Petre
1 / 7 shared
Ademi, Egzon
1 / 1 shared
Boev, Blazo
1 / 1 shared
Jashari, Ahmed
1 / 1 shared
Chart of publication period
2021
2019

Co-Authors (by relevance)

  • Bermanec, Vladimir
  • Chukanov, Nikita V.
  • Zebec, Vladimir
  • Šturman, Božidar Darko
  • Bermanec, Marko
  • Pavlovski, Blagoj
  • Reka, Arianit A.
  • Makreski, Petre
  • Ademi, Egzon
  • Boev, Blazo
  • Jashari, Ahmed
OrganizationsLocationPeople

article

Ardennite-bearing mineral association related to sulfide-free ores with chalcophile metals at Nežilovo, Pelagonian Massif, North Macedonia

  • Bermanec, Vladimir
  • Chukanov, Nikita V.
  • Boev, Ivan
  • Zebec, Vladimir
  • Šturman, Božidar Darko
  • Bermanec, Marko
Abstract

<jats:p>Abstract. Among numerous minerals determined at Nežilovo, Pelagonian Massif, North Macedonia, ardennite-(As) has been discovered in two different associations and studied by means of optical microscopy, electron microprobe analysis (EMPA), and single-crystal and powder X-ray diffraction methods. The refractive indices of ardennite-(As) from Nežilovo are α=1.537(2), β=1.579(1) and γ=1.741(1), where γ corresponds to the c direction. The optical axial angle is 2Vx=49(1)∘. EMPA of the investigated samples yields the following empirical formulae: [Mn3.272+Ca0.73]Σ4.00[Al4.18Mg1.24Fe0.29Mn0.193+Zn0.10]Σ6.00(Si4.73Al0.27)Σ5.00(As0.96Si0.03V0.01)Σ1.00O22 [OH5.36(H2O)0.64]Σ6.00 for ardennite-(As) and (K0.95Na0.04Ba0.02)Σ1.01(Al1.44Fe0.303+Mg0.20Mn0.03Ti0.02 Zn0.01)Σ2.00(Si3.21Al0.79O10) (OH1.97O0.03)Σ2.00 for the associated red mica. The unit cell parameters of ardennite-(As) determined by X-ray powder diffraction are a=8.757(2) Å, b=5.836(2) Å, c=18.578(2) Å and V=941.97 Å3. The unit cell parameters of ardennite-(As) were also determined by single-crystal X-ray diffraction and are a=8.760(1) Å, b=5.838(1) Å, c=18.582(2) Å and V=950.30 Å3. Regularities of isomorphism in ardennite-related minerals are discussed. The presence of ardennite-(As) in association with 2M1 and 3T phengite polytypes provides evidence for three separate stages of formation. Conditions at which ardennite-(As) crystallized have been estimated based on compositional features of associated micas.</jats:p>

Topics
  • impedance spectroscopy
  • mineral
  • powder X-ray diffraction
  • optical microscopy
  • diffraction method