Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Tison, Jean-Louis

  • Google
  • 1
  • 7
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Scientific history, sampling approach, and physical characterization of the Camp Century sub-glacial sediment core, a rare archive from beneath the Greenland Ice Sheetcitations

Places of action

Chart of shared publication
Souza, Juliana
1 / 1 shared
Courville, Zoe R.
1 / 1 shared
Rittenour, Tammy M.
1 / 2 shared
Fripiat, Francois
1 / 1 shared
Blard, Pierre-Henri
1 / 2 shared
Christ, Andrew J.
1 / 1 shared
Mastro, Halley
1 / 1 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Souza, Juliana
  • Courville, Zoe R.
  • Rittenour, Tammy M.
  • Fripiat, Francois
  • Blard, Pierre-Henri
  • Christ, Andrew J.
  • Mastro, Halley
OrganizationsLocationPeople

document

Scientific history, sampling approach, and physical characterization of the Camp Century sub-glacial sediment core, a rare archive from beneath the Greenland Ice Sheet

  • Souza, Juliana
  • Courville, Zoe R.
  • Rittenour, Tammy M.
  • Tison, Jean-Louis
  • Fripiat, Francois
  • Blard, Pierre-Henri
  • Christ, Andrew J.
  • Mastro, Halley
Abstract

<jats:p>Abstract. Basal materials in ice cores contain information about paleoclimate conditions, glacial processes, and the timing of past ice-free intervals, all of which aid understanding of ice-sheet stability and its contribution to sea-level rise in a warming climate. Only a few ice cores have been drilled through ice sheets to the underlying sediment and bedrock, producing limited material for analysis. The Camp Century ice core, which the US Army drilled in northwest Greenland from 1960–1966 CE, recovered about 3.5 meters of sub-glacial sediment. Here, we document the scientific history of the Camp Century sub-glacial sediment, and present our recent core-cutting, sub-sampling, and processing methodology and results for what remains of this unique archive. In 1972, curators in the Buffalo Ice Core Laboratory cut the original core segments into 32 segments each about 10-cm long. Since then, two segments are unaccounted for, two were thawed, and two were cut as pilot samples in 2019. With the exception of the two thawed segments, the rest of the extant core remained frozen since collection. In fall 2021, we documented, described, and then cut each of the remaining frozen archived segments (n=26). We saved an archival half and then cut the working half into eight oriented sub-samples under controlled temperature and light conditions for physical, geochemical, isotopic, sedimentological, magnetic, and biological analyses. Our approach maximized sample usage for multi-proxy analysis, minimized contamination, and preserved archive material for future analyses of this legacy sample material. Grain size, bulk density, sedimentary features, magnetic susceptibility, ice content, as well as pore-ice pH and conductivity, suggest that the basal sediment contains five stratigraphic units. We interpret these stratigraphic units as representing different depositional environments in sub-glacial or ice-free conditions: from bottom to top, a diamicton with sub-horizontal ice lenses (Unit 1); vertically-fractured ice with dispersed fine-grain sediments (&lt; 20 % in mass) (Unit 2); a normally graded bed of pebbles to very fine sand in an icy matrix (Unit 3); bedded very fine to fine sand (Unit 4); and stratified medium to coarse sand (Unit 5). Plant macrofossils are present in all samples and most abundant in Units 3 and 4; insect remains are present in some samples (Units 1, 3, and 5). Our approach provides a working template for future studies of ice-core basal sediment because it includes intentional planning of core sub-sampling, processing methodologies, and archiving strategies in order to optimize the collection of paleoclimate, glacial process, geochemical, geochronological, and sediment properties from archives of limited size. Our work benefited from a carefully curated and preserved archive, allowing for the application of techniques not available in 1966. Preserving uncontaminated core material for future analytical capabilities is an important consideration for rare archive materials such as these from Camp Century.</jats:p>

Topics
  • density
  • impedance spectroscopy
  • pore
  • grain
  • grain size
  • susceptibility