People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Madeira, Lm
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2023Fe-containing carbon-coated monoliths prepared by CVD in gaseous toluene abatement-parametric analysis of the Fenton processcitations
- 2022Gaseous toluene abatement by the heterogeneous Fenton-like process using iron/carbon-coated monolith as catalyst: Proof of conceptcitations
- 2022Unravelling the relation between processed crude oils and the composition of spent caustic effluents as well as the respective economic impactcitations
- 2019Low temperature glycerol steam reforming over a Rh-based catalyst combined with oxidative regenerationcitations
- 2016Chemical and photochemical degradation of polybrominated diphenyl ethers in liquid systems - A reviewcitations
- 2014Azo-dye orange II degradation by the heterogeneous Fenton-like process using a zeolite Y-Fe catalyst-Kinetics with a model based on the Fermi's equationcitations
- 2014Removal of paraquat pesticide with Fenton reaction in a pilot scale water systemcitations
- 2014Boehmite-phenolic resin carbon molecular sieve membranes-Permeation and adsorption studiescitations
- 2013Influence of the iron precursor in the preparation of heterogeneous Fe/activated carbon Fenton-like catalystscitations
- 2013Drinking water and biofilm disinfection by Fenton-like reactioncitations
- 2010Enhancing the production of hydrogen via water-gas shift reaction using Pd-based membrane reactorscitations
- 2007Azo-dye Orange II degradation by heterogeneous Fenton-like reaction using carbon-Fe catalystscitations
- 2005Proton electrolyte membrane properties and direct methanol fuel cell performance II. Fuel cell performance and membrane properties effectscitations
- 2005Performance and efficiency of a DMFC using non-fluorinated composite membranes operating at low/medium temperaturescitations
- 2002New evidences of redox mechanism in n-butane oxidative dehydrogenation over undoped and Cs-doped nickel molybdatescitations
Places of action
Organizations | Location | People |
---|
article
Removal of paraquat pesticide with Fenton reaction in a pilot scale water system
Abstract
Advanced oxidation processes, such as the Fenton's reagent, are powerful methods for decontamination of different environments from recalcitrant organics. In this work, the degradation of paraquat (PQ) pesticide was assessed (employing the commercial product gramoxone) directly inside the pipes of a pilot scale loop system; the effect of corroded cast iron pipe and loose deposits for catalysing the process was also evaluated. Results showed that complete degradation of paraquat ([PQ]0Combining double low line 3.9 × 10−4 M, <i>T</i> Combining double low line 20-30 C, pH0 Combining double low line 3, [H2O2]0 Combining double low line 1.5 × 10-2 M and [Fe (II)] Combining double low line 5.0 × 10−4 M,) was achieved within 8 h, either in lab scale or in the pilot loop. Complete PQ degradation was obtained at pH 3 whereas only 30% of PQ was degraded at pH 5 during 24 h. The installation of old cast iron segments with length from 0.5 to 14 m into PVC pipe loop system had a significant positive effect on degradation rate of PQ, even without addition of iron salt; the longer the iron pipes section, the faster was the pesticide degradation. Addition of loose deposits (mostly corrosion products composed of goethite, magnetite and a hydrated phase of FeO) also catalysed the Fenton reaction due to presence of iron in the deposits. Moreover, gradual addition of hydrogen peroxide improved gramoxone degradation and mineralization. This study showed for the first time that is possible to achieve complete degradation of pesticides in situ pipe water system and that deposits and corroded pipes catalyse oxidation of pesticides. © Author(s) 2014.