Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ge, Maorong

  • Google
  • 1
  • 6
  • 56

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2016Tropospheric delay parameters from numerical weather models for multi-GNSS precise positioning56citations

Places of action

Chart of shared publication
Heinkelmann, Robert
1 / 2 shared
Lu, Cuixian
1 / 1 shared
Schuh, Harald
1 / 3 shared
Zus, Florian
1 / 1 shared
Dick, Galina
1 / 1 shared
Wickert, Jens
1 / 3 shared
Chart of publication period
2016

Co-Authors (by relevance)

  • Heinkelmann, Robert
  • Lu, Cuixian
  • Schuh, Harald
  • Zus, Florian
  • Dick, Galina
  • Wickert, Jens
OrganizationsLocationPeople

article

Tropospheric delay parameters from numerical weather models for multi-GNSS precise positioning

  • Heinkelmann, Robert
  • Lu, Cuixian
  • Ge, Maorong
  • Schuh, Harald
  • Zus, Florian
  • Dick, Galina
  • Wickert, Jens
Abstract

<jats:p>Abstract. The recent dramatic development of multi-GNSS (Global Navigation Satellite System) constellations brings great opportunities and potential for more enhanced precise positioning, navigation, timing, and other applications. Significant improvement on positioning accuracy, reliability, as well as convergence time with the multi-GNSS fusion can be observed in comparison with the single-system processing like GPS (Global Positioning System). In this study, we develop a numerical weather model (NWM)-constrained precise point positioning (PPP) processing system to improve the multi-GNSS precise positioning. Tropospheric delay parameters which are derived from the European Centre for Medium-Range Weather Forecasts (ECMWF) analysis are applied to the multi-GNSS PPP, a combination of four systems: GPS, GLONASS, Galileo, and BeiDou. Observations from stations of the IGS (International GNSS Service) Multi-GNSS Experiments (MGEX) network are processed, with both the standard multi-GNSS PPP and the developed NWM-constrained multi-GNSS PPP processing. The high quality and accuracy of the tropospheric delay parameters derived from ECMWF are demonstrated through comparison and validation with the IGS final tropospheric delay products. Compared to the standard PPP solution, the convergence time is shortened by 20.0, 32.0, and 25.0 % for the north, east, and vertical components, respectively, with the NWM-constrained PPP solution. The positioning accuracy also benefits from the NWM-constrained PPP solution, which was improved by 2.5, 12.1, and 18.7 % for the north, east, and vertical components, respectively.</jats:p>

Topics
  • impedance spectroscopy
  • experiment