Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Baeza-Romero, M. T.

  • Google
  • 1
  • 12
  • 24

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2014A smog chamber comparison of a microfluidic derivatisation measurement of gas-phase glyoxal and methylglyoxal with other analytical techniques24citations

Places of action

Chart of shared publication
García, M. Ródenas
1 / 1 shared
Muñoz, A.
1 / 24 shared
Peppe, S.
1 / 1 shared
Pang, X.
1 / 2 shared
Goodall, I. C. A.
1 / 1 shared
Rickard, Andrew
1 / 1 shared
Monks, P. S.
1 / 1 shared
Ball, S. M.
1 / 1 shared
Daniels, M. J. S.
1 / 1 shared
Adams, T. J.
1 / 1 shared
Lewis, Alastair
1 / 1 shared
Sánchez, P.
1 / 7 shared
Chart of publication period
2014

Co-Authors (by relevance)

  • García, M. Ródenas
  • Muñoz, A.
  • Peppe, S.
  • Pang, X.
  • Goodall, I. C. A.
  • Rickard, Andrew
  • Monks, P. S.
  • Ball, S. M.
  • Daniels, M. J. S.
  • Adams, T. J.
  • Lewis, Alastair
  • Sánchez, P.
OrganizationsLocationPeople

article

A smog chamber comparison of a microfluidic derivatisation measurement of gas-phase glyoxal and methylglyoxal with other analytical techniques

  • García, M. Ródenas
  • Muñoz, A.
  • Peppe, S.
  • Pang, X.
  • Goodall, I. C. A.
  • Rickard, Andrew
  • Monks, P. S.
  • Ball, S. M.
  • Daniels, M. J. S.
  • Baeza-Romero, M. T.
  • Adams, T. J.
  • Lewis, Alastair
  • Sánchez, P.
Abstract

A microfluidic lab-on-a-chip derivatisation technique has been developed to measure part per billion (ppbV) mixing ratios of gaseous glyoxal (GLY) and methylglyoxal (MGLY), and the method is compared with other techniques in a smog chamber experiment. The method uses o-(2, 3, 4, 5, 6-pentafluorobenzyl) hydroxylamine (PFBHA) as a derivatisation reagent and a microfabricated planar glass micro-reactor comprising an inlet, gas and fluid splitting and combining channels, mixing junctions, and a heated capillary reaction microchannel. The enhanced phase contact area-to-volume ratio and the high heat transfer rate in the micro-reactor resulted in a fast and highly efficient derivatisation reaction, generating an effluent stream ready for direct introduction to a gas chromatograph-mass spectrometer (GC-MS). A linear response for GLY was observed over a calibration range 0.7 to 400 ppbV, and for MGLY of 1.2 to 300 ppbV, when derivatised under optimal reaction conditions. The analytical performance shows good accuracy (6.6% for GLY and 7.5% for MGLY), suitable precision (<12.0%) with method detection limits (MDLs) of 75 pptV for GLY and 185 pptV for MGLY, with a time resolution of 30 min. These MDLs are below or close to typical concentrations of these compounds observed in ambient air. The feasibility of the technique was assessed by applying the methodology to quantify α-dicarbonyls formed during the photo-oxidation of isoprene in the EUPHORE chamber. Good correlations were found between microfluidic measurements and Fourier Transform InfraRed spectroscopy (FTIR) with a correlation coefficient (r2) of 0.84, Broadband Cavity Enhanced Absorption Spectroscopy (BBCEAS) (r2 = 0.75), solid phase micro extraction (SPME) (r2 = 0.89), and a photochemical chamber box modelling calculation (r2 = 0.79) for GLY measurements. For MGLY measurements, the microfluidic technique showed good agreement with BBCEAS (r2 = 0.87), SPME (r2 = 0.76), and the modeling simulation (r2 = 0.83), FTIR (r2 = 0.72) but displayed a discrepancy with Proton-Transfer Reaction Time-of-Flight Mass Spectrometry (PTR-ToF-MS) with r2 value of 0.39.

Topics
  • impedance spectroscopy
  • compound
  • phase
  • experiment
  • simulation
  • glass
  • glass
  • gas chromatography
  • Fourier transform infrared spectroscopy
  • spectrometry
  • time-of-flight mass spectrometry
  • gas chromatography-mass spectrometry
  • solid-phase micro-extraction