Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Uysal, Onur

  • Google
  • 1
  • 8
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Four-Dimensional Printing Technology at the Frontier of Advanced Modeling and Applications in Brain Tissue Engineering2citations

Places of action

Chart of shared publication
Avci, Huseyin
1 / 4 shared
Tasa, Burcugül Altuğ
1 / 1 shared
Ebrahimi, Aliakbar
1 / 1 shared
Soykan, Merve Nur
1 / 1 shared
Eker Sariboyaci, Ayla
1 / 1 shared
Ghorbanpoor, Hamed
1 / 2 shared
Kaya, Murat
1 / 5 shared
Sengel, Tayfun
1 / 1 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Avci, Huseyin
  • Tasa, Burcugül Altuğ
  • Ebrahimi, Aliakbar
  • Soykan, Merve Nur
  • Eker Sariboyaci, Ayla
  • Ghorbanpoor, Hamed
  • Kaya, Murat
  • Sengel, Tayfun
OrganizationsLocationPeople

article

Four-Dimensional Printing Technology at the Frontier of Advanced Modeling and Applications in Brain Tissue Engineering

  • Avci, Huseyin
  • Tasa, Burcugül Altuğ
  • Uysal, Onur
  • Ebrahimi, Aliakbar
  • Soykan, Merve Nur
  • Eker Sariboyaci, Ayla
  • Ghorbanpoor, Hamed
  • Kaya, Murat
  • Sengel, Tayfun
Abstract

<jats:p xml:lang="en">The complex process behind the brain topology, which has been extensively studied for the last ten years, is still unclear. Therefore, neural tissue engineering studies are needed to better understand cortical folds. With the development of 4-dimensional (4D) bioprinters using cell-loaded smart materials, a promising path has been opened in the mimicry of the neural tissue. In our study, we review the usage areas of 4D printers, which have been developing in recent years, in modelling brain tissue. As a result of development of smart materials printed with 3-dimensional (3D) printers caused emerging of 4D printers, rapidly. Smart materials can change their properties based on physical, chemical and biological stimuli, and this change can be a reversible process. Cell-loaded printed smart materials should have little effect on cell viability of both the incoming stimulus and the physical change. It is also important that the material used is non-toxic and the solvent is suitable for cell viability. On the other hand, hydrogels are frequently studied to mimic the complex neural network of neural tissue. Agents that affect the crosslinking or degree of crosslinking of hydrogels can be easily controlled and changed. In addition, studies with neural stem cells have shown that hydrogels have a supportive effect on the proliferation and maturation of neural stem cells. Since the folding time, strength and location of smart materials cannot be known precisely, it can be an advantage of 4D bioprinters as it can be controlled and studied whether the results of the stress on the cells in this region will affect other cells. It is an ideal methodology to study the effect of cortical folding on neural stem cells, especially thanks to the ease of experimental manipulations provided by 4D bioprinters. It is expected that 4D bioprinters will be adopted and rapid developments will occur in the multidisciplinary field of tissue engineering of brain tissue in the near coming years.</jats:p>

Topics
  • impedance spectroscopy
  • strength