People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bundaleski, N.
Universidade Nova de Lisboa
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2023Amorphous carbon thin filmscitations
- 2020Free-standing N-Graphene as conductive matrix for Ni(OH)2 based supercapacitive electrodescitations
- 2019Nanocomposite thin films based on Au-Ag nanoparticles embedded in a CuO matrix for localized surface plasmon resonance sensingcitations
- 2018Development of Au/CuO nanoplasmonic thin films for sensing applicationscitations
- 2016Surface modifications on as-grown boron doped CVD diamond films induced by the B2O3-ethanol-Ar systemcitations
- 2013Study of SEY degradation of amorphous carbon coatings
- 2013Increase of secondary electron yield of amorphous carbon coatings under high vacuum conditionscitations
- 2012Secondary electron emission yield (SEY) in amorphous and graphitic carbon films prepared by PLDcitations
Places of action
Organizations | Location | People |
---|
document
Study of SEY degradation of amorphous carbon coatings
Abstract
Deposition of low secondary electron yield (SEY) carbon coatings by magnetron sputtering onto the inner walls of the accelerator seems to be the most promising solution for suppressing the electron cloud problem. However, these coatings change their electron emission properties during long term exposure to air. The ageing process of carbon coated samples with initial SEY of about 0.9 received from CERN is studied as a function of exposure to different environments. It is shown that samples having the same initial SEY may age with different rates. The SEY increase can be correlated with the surface concentration of oxygen. Annealing of samples in air at 100-200 °C reduces the ageing rate and even recovers previously degraded samples. The result of annealing is reduction of the hydrogen content in the coatings by triggering its surface segregation followed by desorption