People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Gomes-Silva, Ana
Universidade Nova de Lisboa
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2024Unraveling the solar and visible light-induced deactivation mechanism of Pt-decorated carbon/TiO2 nanocomposite in photocatalytic hydrogen productioncitations
- 2021Perovskite Metal–Oxide–Semiconductor Structures for Interface Characterizationcitations
- 2021High-Performance and Industrially Viable Nanostructured SiOx Layers for Interface Passivation in Thin Film Solar Cellscitations
- 2020Front passivation of Cu(In,Ga)Se2 solar cells using Al2O3citations
- 2019Rear Optical Reflection and Passivation Using a Nanopatterned Metal/Dielectric Structure in Thin-Film Solar Cellscitations
- 2016Atomically controlled, self-limiting procedures for growth of aluminum oxide on SiC-on-Si
- 2013Amorphous Carbon Coatings: Temperature Effect on Secondary Electron Yield (SEY)
- 2013Study of SEY degradation of amorphous carbon coatings
- 2013Increase of secondary electron yield of amorphous carbon coatings under high vacuum conditionscitations
- 2005Second-harmonic generation studies of C60 multilayer on nickel
Places of action
Organizations | Location | People |
---|
document
Study of SEY degradation of amorphous carbon coatings
Abstract
Deposition of low secondary electron yield (SEY) carbon coatings by magnetron sputtering onto the inner walls of the accelerator seems to be the most promising solution for suppressing the electron cloud problem. However, these coatings change their electron emission properties during long term exposure to air. The ageing process of carbon coated samples with initial SEY of about 0.9 received from CERN is studied as a function of exposure to different environments. It is shown that samples having the same initial SEY may age with different rates. The SEY increase can be correlated with the surface concentration of oxygen. Annealing of samples in air at 100-200 °C reduces the ageing rate and even recovers previously degraded samples. The result of annealing is reduction of the hydrogen content in the coatings by triggering its surface segregation followed by desorption