Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bashir, Muhammad Shafique

  • Google
  • 3
  • 12
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2013Deposit formation in a full-scale pulverized wood-fired power plant with and without coal fly ash additioncitations
  • 2010Characterization and Quantification of Deposits Buildup and Removal in Biomass Suspension-Fired Boilerscitations
  • 2010Ash Deposit Formation and Removal in a Straw and Wood Suspension-Fired Boilercitations

Places of action

Chart of shared publication
Jensen, Peter Arendt
3 / 34 shared
Wu, Hao
1 / 21 shared
Glarborg, Peter
1 / 28 shared
Sander, Bo
1 / 7 shared
Wedel, Stig
2 / 4 shared
Pedersen, S. Thaaning
1 / 2 shared
Wadenbäck, J.
1 / 3 shared
Dam-Johansen, Kim
2 / 56 shared
Frandsen, Flemming Jappe
2 / 24 shared
Wolfe, Thomas
1 / 4 shared
Pedersen, Søren T.
1 / 1 shared
Wadenbäck, Johan
1 / 2 shared
Chart of publication period
2013
2010

Co-Authors (by relevance)

  • Jensen, Peter Arendt
  • Wu, Hao
  • Glarborg, Peter
  • Sander, Bo
  • Wedel, Stig
  • Pedersen, S. Thaaning
  • Wadenbäck, J.
  • Dam-Johansen, Kim
  • Frandsen, Flemming Jappe
  • Wolfe, Thomas
  • Pedersen, Søren T.
  • Wadenbäck, Johan
OrganizationsLocationPeople

document

Characterization and Quantification of Deposits Buildup and Removal in Biomass Suspension-Fired Boilers

  • Jensen, Peter Arendt
  • Wedel, Stig
  • Bashir, Muhammad Shafique
  • Pedersen, S. Thaaning
  • Wadenbäck, J.
  • Dam-Johansen, Kim
  • Frandsen, Flemming Jappe
  • Wolfe, Thomas
Abstract

Utilization of biomass as wood or straw in large suspension­fired boilers is an efficient method to reduce the use of fossil fuels consumption and to reduce the net CO2 formation. However, the presence of chlorine and alkali metals in biomass (straw) generate ash with a low melting point and induce large problems of ash deposit formation on the superheater tubes. Full scale studies on biomass ash deposition and removal had been done on biomass grate boilers, while only limited data is available from biomass suspension­firing. The aim of this study was to investigate deposit mass uptake, heat uptake reduction, fly ash and deposit characteristics, and deposit removal by using an advanced online deposit probe in a suspension­fired boiler using wood and straw pellets as fuel. The influence of fuel type and probe exposure time on the ash deposition rate, the heat uptake, the fly ash and deposit characteristics, and deposit removal have been investigated. The final deposit mass signal after a residence time of 3 to 5 days region was 1041, 1475, 1520 and 1670 g/m2 for 35, 65, 80 and 100% straw share respectively in the superheater region (flue gas temperature, 800­900 oC), while the mass uptake was very small in the tube bank region (flue gas temperature, 550­605 oC) during pure wood­firing. It was found that during suspension­firing of pure straw at low boiler load, the overall weight uptake is comparable with grate­firing, even though the amount of fly ash generated was significantly higher during suspension­firing. Deposit removal through debonding was the main mechanism of deposit shedding when no plant sootblower was in operation. Elemental analysis of fly ashes and deposit samples was made in order to determine concentrations of the major elements Al, Ca, Fe, K, Mg, Na, P, Si, S and Cl. It was identified that the straw suspension­firing fly ashes contain high contents of Si and Ca, while grate­firing fly ashes contain higher contents of volatile elements K, Cl and S.

Topics
  • Deposition
  • impedance spectroscopy
  • wood
  • elemental analysis
  • Alkali metal