People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Dam-Johansen, Kim
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (56/56 displayed)
- 2024Advancing Coating Science: Non-Destructive Methods for Coating Degradation Evaluation and Breakdown Mechanism Investigation
- 2024Lignin Phosphate: A Biobased Substitute for Zinc Phosphate in Corrosion-Inhibiting Coatingscitations
- 2024Lignin Phosphate: A Biobased Substitute for Zinc Phosphate in Corrosion-Inhibiting Coatingscitations
- 2023Trust, but verify!
- 2023Polysiloxane-based elastomers and methods of producing such
- 2023Curable polysiloxane coating composition comprising polysilazane
- 2022Marine biofouling resistance rating using image analysiscitations
- 2022Encapsulated Inhibitive Pigment for Smart Anti-corrosive Epoxy Coatings
- 2022A Tunable Hyperspectral Imager for Detection and Quantification of Marine Biofouling on Coated Surfacescitations
- 2022Coating degradation and rust creep assessment - A comparison between a destructive method according to ISO 12944 and selected non-destructive methods
- 2022Self-stratification studies in waterborne epoxy-silicone systemscitations
- 2022Self-stratification studies in waterborne epoxy-silicone systemscitations
- 2022Thermal Conversion of Sodium Phytate Using the Oxygen Carrier Ilmenite Interaction with Na-Phosphate and Its Effect on Reactivitycitations
- 2022Non-destructive Evaluation of Coating Degradation and Rust Creep
- 2022Non-destructive Evaluation of Coating Degradation and Rust Creep
- 2021Methanol degradation mechanisms and permeability phenomena in novolac epoxy and polyurethane coatingscitations
- 2021Methanol degradation mechanisms and permeability phenomena in novolac epoxy and polyurethane coatingscitations
- 2021The influence of CO2 at HPHT conditions on properties and failures of an amine-cured epoxy novolac coatingcitations
- 2021Simultaneous tracking of hardness, reactant conversion, solids concentration, and glass transition temperature in thermoset polyurethane coatingscitations
- 2021A Tannin-based Inhibitive Pigment for a Sustainable Anti-corrosive Epoxy Coating Formulation
- 2021Degradation pathways of amine-cured epoxy novolac and bisphenol F resins under conditions of high pressures and high temperatures
- 2021Effects of Biochar Nanoparticles on Anticorrosive Performance of Zinc-rich Epoxy Coatingscitations
- 2021Effects of Biochar Nanoparticles on Anticorrosive Performance of Zinc-rich Epoxy Coatingscitations
- 2021Rust creep assessment - A comparison between a destructive method according to ISO 12944 and selected non-destructive methodscitations
- 2021Simultaneous tracking of hardness, reactant conversion, solids concentration, and glass transition temperature in thermoset polyurethane coatingscitations
- 2021The influence of CO 2 at HPHT conditions on properties and failures of an amine-cured epoxy novolac coatingcitations
- 2020Factors influencing mechanical long-term stability of condensation curing silicone elastomerscitations
- 2020Challenges in the development of reliable silicone elastomer coatings
- 2020Active deformation of dielectric elastomer for detection of biofouling
- 2020Reliable Condensation Curing Silicone Elastomers with Tailorable Propertiescitations
- 2019Scratch resistance of silicone elastomer coatings
- 2019Corrosion Protection of Epoxy Coating with Calcium Phosphate Encapsulated by Mesoporous Silica Nanoparticles
- 2019Corrosion Protection of Epoxy Coating with Calcium Phosphate Encapsulated by Mesoporous Silica Nanoparticles
- 2019Exposure of hydrocarbon intumescent coatings to the UL1709 heating curve and furnace rheology: Effects of zinc borate on char propertiescitations
- 2019Kinetic Parameters for Biomass under Self-Ignition Conditions: Low-Temperature Oxidation and Pyrolysiscitations
- 2019Measurements of methanol permeation rates across thermoset organic coatings
- 2018Structure-property relationship in silicone networks
- 2018Reaction kinetics for biomass self-ignition at 150–230°C
- 2017Acid-resistant organic coatings for the chemical industry: a reviewcitations
- 2014Properties of slurries made of fast pyrolysis oil and char or beech woodcitations
- 2013Efficient Fuel Pretreatment: Simultaneous Torrefaction and Grinding of Biomasscitations
- 2013Efficient Fuel Pretreatment: Simultaneous Torrefaction and Grinding of Biomasscitations
- 2013Influence of Biomass Chemical Properties on Torrefaction Characteristicscitations
- 2013Influence of Biomass Chemical Properties on Torrefaction Characteristicscitations
- 2012Devolatilization and Combustion of Tire Rubber and Pine Wood in a Pilot Scale Rotary Kilncitations
- 2012Microcapsule-based self-healing anticorrosive coatings: Capsule size, coating formulation, and exposure testingcitations
- 2011Synthesis of durable microcapsules for self-healing anticorrosive coatings: A comparison of selected methodscitations
- 2010Characterization and Quantification of Deposits Buildup and Removal in Biomass Suspension-Fired Boilers
- 2010Characterization and Quantification of Deposits Buildup and Removal in Biomass Suspension-Fired Boilers
- 2010Ash Deposit Formation and Removal in a Straw and Wood Suspension-Fired Boiler
- 2008A review of the interference of carbon containing fly ash with air entrainment in concretecitations
- 2007Characterization of pigment-leached antifouling coatings using BET surface area measurements and mercury porosimetrycitations
- 2006Dissolution rate measurements of sea water soluble pigments for antifouling paintscitations
- 2005Reaction rate estimation of controlled-release antifouling paint binders: Rosin-based systemscitations
- 2005Reaction rate estimation of controlled-release antifouling paint binders: Rosin-based systemscitations
- 2000Deposit Formation in a 150 MWe Utility PF-Boiler during Co-combustion of Coal and Strawcitations
Places of action
Organizations | Location | People |
---|
document
Characterization and Quantification of Deposits Buildup and Removal in Biomass Suspension-Fired Boilers
Abstract
Utilization of biomass as wood or straw in large suspensionfired boilers is an efficient method to reduce the use of fossil fuels consumption and to reduce the net CO2 formation. However, the presence of chlorine and alkali metals in biomass (straw) generate ash with a low melting point and induce large problems of ash deposit formation on the superheater tubes. Full scale studies on biomass ash deposition and removal had been done on biomass grate boilers, while only limited data is available from biomass suspensionfiring. The aim of this study was to investigate deposit mass uptake, heat uptake reduction, fly ash and deposit characteristics, and deposit removal by using an advanced online deposit probe in a suspensionfired boiler using wood and straw pellets as fuel. The influence of fuel type and probe exposure time on the ash deposition rate, the heat uptake, the fly ash and deposit characteristics, and deposit removal have been investigated. The final deposit mass signal after a residence time of 3 to 5 days region was 1041, 1475, 1520 and 1670 g/m2 for 35, 65, 80 and 100% straw share respectively in the superheater region (flue gas temperature, 800900 oC), while the mass uptake was very small in the tube bank region (flue gas temperature, 550605 oC) during pure woodfiring. It was found that during suspensionfiring of pure straw at low boiler load, the overall weight uptake is comparable with gratefiring, even though the amount of fly ash generated was significantly higher during suspensionfiring. Deposit removal through debonding was the main mechanism of deposit shedding when no plant sootblower was in operation. Elemental analysis of fly ashes and deposit samples was made in order to determine concentrations of the major elements Al, Ca, Fe, K, Mg, Na, P, Si, S and Cl. It was identified that the straw suspensionfiring fly ashes contain high contents of Si and Ca, while gratefiring fly ashes contain higher contents of volatile elements K, Cl and S.