People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Pirk, Rogério
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
Places of action
Organizations | Location | People |
---|
article
Characterization and Modeling of the Viscoelastic Behavior of a Self-Adhesive Rubber Using Dynamic Mechanical Analysis Tests
Abstract
The goal of this study is twofold. The first one is to assess the applicability of approaches based on dynamic-mechanical analysis to investigate the viscoelastic properties of a self-adhesive synthetic rubber. The second goal is to identify the parameters of a viscoelastic model which accurately represents the frequency-dependent mechanical properties. For that purpose, the time-temperature superposition principle is successfully applied to build the master curves of the material up to 1 MHz. The thickness of the samples and the thermal expansion effects are found to have a negligible influence on the mechanical properties measured by dynamic-mechanical analysis. The parameters of a generalized Maxwell model and a fractional derivative model are identified from the obtained master curves and lead to an accurate representation of the frequency-dependent mechanical properties of the rubber.