Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Santamaria, Ricardo

  • Google
  • 3
  • 11
  • 15

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2023Stress corrosion cracking behavior of austenitic stainless steel 316L produced using laser-based powder bed fusion6citations
  • 2023Stress Corrosion Cracking of 316L Stainless Steel Additively Manufactured with Sinter-Based Material Extrusion5citations
  • 2023Crystallographic Texture and Substructural Phenomena in 316 Stainless Steel Printed by Selective Laser Melting4citations

Places of action

Chart of shared publication
Quadir, Zakaria
1 / 7 shared
Wang, Ke
2 / 18 shared
Iannuzzi, Mariano
1 / 6 shared
Salem, Mehdi
1 / 30 shared
Lours, Philippe
1 / 55 shared
Salasi, Mobin
1 / 2 shared
Quadir, Md Zakaria
1 / 1 shared
Mendoza, Michael Y.
1 / 1 shared
Pojtanabuntoeng, Kod
1 / 1 shared
Leadbeater, Garry
1 / 1 shared
Rickard, William D. A.
1 / 7 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Quadir, Zakaria
  • Wang, Ke
  • Iannuzzi, Mariano
  • Salem, Mehdi
  • Lours, Philippe
  • Salasi, Mobin
  • Quadir, Md Zakaria
  • Mendoza, Michael Y.
  • Pojtanabuntoeng, Kod
  • Leadbeater, Garry
  • Rickard, William D. A.
OrganizationsLocationPeople

article

Stress corrosion cracking behavior of austenitic stainless steel 316L produced using laser-based powder bed fusion

  • Quadir, Zakaria
  • Wang, Ke
  • Iannuzzi, Mariano
  • Santamaria, Ricardo
  • Salem, Mehdi
  • Lours, Philippe
  • Salasi, Mobin
Abstract

International audience ; Austenitic stainless steel UNS S31603 (SS316L) is widely used in the resources industry due to its excellent corrosion resistance, ductility, and weldability. Recently, laser-based powder bed fusion (LPBF) manufacturing has gained popularity for creating SS316L components with complex geometries and superior mechanical properties. However, the rapid melting and solidification of the deposited layers during the thermal cycle of LPBF produce residual stresses. Components manufactured through LPBF are frequently used under applied stress in corrosive environments. Thus, it is crucial to understand their susceptibility to stress corrosion cracking (SCC) and the impact of residual stresses. This study investigated the combined effects of applied stress and temperature on the SCC behavior of LPBF SS316L using custom-made C-ring test specimens. Cold-drawn wrought SS316L was included for comparison. Stress relief heat treatment, microhardness testing, partial immersion testing, and microanalysis techniques, such as light optical microscopy (LOM), scanning electron microscopy (SEM), and electron backscatter diffraction (EBSD), were used to quantify the SCC behavior. The outcomes of this study showed that stressed and unstressed LPBF SS316L specimens were highly susceptible to cracking around their printed holes. The SCC susceptibility was attributed to the residual stresses introduced by the printed supports, as both polished and as-printed holes showed similar cracking behavior. This work provides valuable insights and lays a foundation for further research into the impact of using C-ring samples to investigate SCC susceptibility and sheds light on the SCC susceptibility of as-printed components of complex geometry printed with supports due to the influence of residual stresses.

Topics
  • impedance spectroscopy
  • stainless steel
  • scanning electron microscopy
  • crack
  • selective laser melting
  • electron backscatter diffraction
  • optical microscopy
  • susceptibility
  • ductility
  • solidification
  • stress corrosion
  • powder bed fusion