People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Thomas, Randal B.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Corrosion Behavior of Ferritic-Martensitic Steel in H2O Containing CO2 and O2 at 50°C to 245°C and 8 MPa
Abstract
<jats:p>To understand the corrosion mechanisms of structural materials in low-temperature components of direct supercritical CO2 power cycles, immersion experiments were performed in aqueous environments expected at these conditions. A ferritic-martensitic steel (UNS K91560) was selected as the candidate material. Steel specimens were fully submerged in H2O pressurized with 99% CO2 and 1% O2 to 8 MPa, and heated up to temperature (50°C, 100°C, 150°C, or 245°C), with a test duration of 500 h. Corrosion rates were calculated based on mass loss. Scanning electron microscope, x-ray diffraction, x-ray photoelectron spectroscopy, and Raman spectroscopy were used to characterize microstructure, phases, crystallinity, and composition of the corrosion product layer. Experimental results show that specimens exposed at 100°C had the highest corrosion rate, followed by the specimens exposed at 50°C. The specimens exposed at the highest temperature exhibited the lowest corrosion rate. An outer noncontinuous, nonprotective Fe-rich oxide layer and a well-adhered inner oxide layer containing both Fe and Cr formed on the specimen surfaces. The inner oxide layer changed from amorphous to crystalline as the temperature increased.</jats:p>