Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Nh, Oberoi

  • Google
  • 1
  • 6
  • 1

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Influence of Three Different Denture Cleansers on Surface Roughness and Strength of Heat-polymerizing Resin: An <i>In Vitro</i> Study.1citations

Places of action

Chart of shared publication
Singh, Dr. Dhirendra Kr
1 / 1 shared
Patel, P.
1 / 10 shared
Cr, Soans
1 / 1 shared
Bashir, T.
1 / 2 shared
Kyathappa, P.
1 / 1 shared
Ss, Jacob
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Singh, Dr. Dhirendra Kr
  • Patel, P.
  • Cr, Soans
  • Bashir, T.
  • Kyathappa, P.
  • Ss, Jacob
OrganizationsLocationPeople

article

Influence of Three Different Denture Cleansers on Surface Roughness and Strength of Heat-polymerizing Resin: An <i>In Vitro</i> Study.

  • Singh, Dr. Dhirendra Kr
  • Nh, Oberoi
  • Patel, P.
  • Cr, Soans
  • Bashir, T.
  • Kyathappa, P.
  • Ss, Jacob
Abstract

<h4>Aim</h4>The purpose of the current study was to evaluate the impact of three different denture cleansers on the strength and surface roughness of heat-polymerizing resin.<h4>Materials and methods</h4>A total of 120 resin discs (10 mm in diameter and 2 mm thick) were created using a stainless steel mold for surface roughness testing and flexural strength testing (in accordance with the American Dental Association (ADA) Specification No.12). Samples were divided into one of three groups (40 samples in each group): group I: Clanden, group II: Clinsodent, group III: Fittydent. Samples were immersed in denture-cleansing solutions for 30 minutes every day, and this process was repeated over a period of 15 days. Samples were stored in distilled water at room temperature in between the immersions. A surface analyzer was utilized to compare the surface roughness of each sample before and after immersion treatments. For recording flexural strength, each sample was subjected to three-point bending test by mounting samples on Universal testing machine. Comparing mean values between groups using one-way ANOVA and the Tukeys honest significant difference (HSD) <i>post hoc</i> test. A significance level of 0.05 was used for all statistical calculations Results: After 15 days, the maximum change of mean surface roughness of heat-polymerizing resin was found in Clanden denture cleanser group (2.64 ± 0.12) followed by Clinsodent group (2.26 ± 0.09) and Fittydent group (1.92 ± 0.06). After 15 days, the maximum change of mean flexural strength changes of heat-polymerizing resin was found in Clanden denture cleanser group (94.78 ± 0.14), followed by Fittydent group (98.64 ± 0.03) and Clinsodent group (99.26 ± 0.21).<h4>Conclusion</h4>Within the limitation, the current study concluded that changes were observed in surface roughness and flexural strength of all heat-polymerizing resin samples after immersion in all three denture cleansers; but least surface roughness and flexural strength changes were observed with the Fittydent cleanser group and Clinsodent group, respectively.<h4>Clinical significance</h4>Cleaning dentures is crucial for maintaining both the prosthesis and oral health; therefore, it is necessary to select a cleanser that is effective without negatively affecting the base resin's qualities over time.

Topics
  • impedance spectroscopy
  • surface
  • stainless steel
  • strength
  • flexural strength
  • bending flexural test
  • resin