People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Giammarinaro, Bruno
Laboratory of Therapeutic Applications of Ultrasound
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
conferencepaper
High frequency elastic wave propagation in micro-elastography
Abstract
We recently proposed an alternative elasticity measurement technique based on elastic wave propagation within a single cell. At this scale, waves at a frequency never reached in the field of elastography (15kHz), are captured using an ultrafast camera and a microscope. This technique is based on the local measurement of the speed of a shear wave, a type of elastic wave. By assuming an infinite and homogeneous elastic medium with respect to the wavelength, the shear modulus μ (elasticity) is estimated. These latter assumptions are discussed through experiments conducted in controlled elastic solids at micro-scale. The conclusion is that wave guide effects as well as viscosity are crucial for quantitative mapping of elasticity.