Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Dagdag, O.

  • Google
  • 1
  • 9
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Comparative study of inhibitory efficacy of methionine and its derivatives in acidic medium by mild steelcitations

Places of action

Chart of shared publication
Daoudi, W.
1 / 2 shared
Oussaid, A.
1 / 1 shared
Messali, M.
1 / 2 shared
Merimi, C.
1 / 1 shared
Berisha, Avni
1 / 7 shared
Zaidi, K.
1 / 1 shared
Hammouti, B.
1 / 21 shared
Touzani, R.
1 / 2 shared
Aouniti, A.
1 / 4 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Daoudi, W.
  • Oussaid, A.
  • Messali, M.
  • Merimi, C.
  • Berisha, Avni
  • Zaidi, K.
  • Hammouti, B.
  • Touzani, R.
  • Aouniti, A.
OrganizationsLocationPeople

article

Comparative study of inhibitory efficacy of methionine and its derivatives in acidic medium by mild steel

  • Daoudi, W.
  • Oussaid, A.
  • Messali, M.
  • Dagdag, O.
  • Merimi, C.
  • Berisha, Avni
  • Zaidi, K.
  • Hammouti, B.
  • Touzani, R.
  • Aouniti, A.
Abstract

Corrosion inhibition effect of L-Methionine (MT1), L-Methionine sulfoxide (MT2) and L-Methionine sulfone (MT3) on mild steel corrosion in 1M HCl solution was studied by using weight loss, electrochemical polarization and electrochemical impedance spectroscopy (EIS) techniques. The experimental results showed that the inhibitory efficiency of the three aminoacids improves with the increase of concentration to reach the maximum value of 95.20% for MT1, 94.14% for MT2 and 88.92% for MT3 for a concentration of 10-3M, which translates that the surface covered by the inhibitor increases with the concentration. The effect of temperature on the corrosion rate was investigated and some thermodynamic parameters were calculated. Polarization studies show that three studied inhibitors suggested that three inhibitors control the anodic as well as cathodic reactions and act as mixed type in nature. The results show that MT1, MT2 and MT3 are good inhibitors, and the adsorption of each inhibitor on mild steel surface obeys Flory-Huggins and Langmuir, with a better fit of the Langmuir isotherm through mixed adsorption (physisorption as well as chemisorption) process. In addition, the quantum approach based on density functional theory (DFT), monte Carlo (MC) and molecular dynamics (MD) simulations was confirmed the reactivity of the studied compound towards the corrosion process.

Topics
  • density
  • surface
  • compound
  • corrosion
  • theory
  • simulation
  • molecular dynamics
  • steel
  • density functional theory
  • electrochemical-induced impedance spectroscopy