Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Juarlin, Eko

  • Google
  • 1
  • 3
  • 4

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Effect of Annealing on the Structural and Optical Properties of ZnO/ITO and AZO/ITO Thin Films Prepared by Sol-Gel Spin Coating4citations

Places of action

Chart of shared publication
Heryanto, Heryanto
1 / 4 shared
Taba, Paulina
1 / 1 shared
Gareso, Paulus Lobo
1 / 1 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Heryanto, Heryanto
  • Taba, Paulina
  • Gareso, Paulus Lobo
OrganizationsLocationPeople

article

Effect of Annealing on the Structural and Optical Properties of ZnO/ITO and AZO/ITO Thin Films Prepared by Sol-Gel Spin Coating

  • Heryanto, Heryanto
  • Taba, Paulina
  • Juarlin, Eko
  • Gareso, Paulus Lobo
Abstract

<jats:p>This paper aims to investigate the effect of annealing on the structural and optical properties of ZnO/ITO and AZO/ITO thin films. In the preparation of ZnO and AZO films, zinc acetate dehydrate (Zn(CH3COO)2.2H2O), ethanol, diethanolamine (DEA), and AlCl3 were used as a starting material, solvent, stabilizer, and dopant sources, respectively. Both ZnO and AZO films were fabricated on ITO (indium tin oxide) substrates using the spin coating technique at room temperature with a rotating speed of 3,000 rpm in 30 s. The films were heated at various temperatures in the temperature range of 400 - 600 °C for 60 min. The crystallite size of the film is calculated using Debye-Scherrer and Williamson-Hall Methods. Based on the UDM results, the crystallite size of ZnO/ITO and AZO/ITO films increases after annealing in comparison with the films before annealing.  From the optical UV-Vis measurements, there was an increase in the transmittance value of the samples after annealing. The transmittance value of ZnO/ITO and AZO/ITO films increases from 40 % before annealing to approximately 80 and 90 %, respectively after annealing. The increase in the transmittance valued in both ZnO/ITO and AZO/ITO after annealing is mainly due to an improvement in the crystalline phase of these films. The band gap energy of ZnO and AZO films is reduced with increasing annealing temperatures, from 3.26 eV before annealing to 3.19 eV for ZnO and 3.23 eV for AZO films after annealing at 600 °C.&#x0D; HIGHLIGHTS&#x0D; &#x0D; The sol-gel spin coating method was used to study the effect of annealing on the structural and optical properties of ZnO/ITO and AZO/ITO films&#x0D; The transmittance valued in both ZnO/ITO and AZO/ITO after annealing increase as a result of an improvement in the crystalline phase of these films&#x0D; Reducing the amorphous phase and the increase of the crystallite size of the films are the main reason for narrowing the band gap energy of the ZnO/ITO and AZO/ITO films&#x0D; </jats:p>

Topics
  • impedance spectroscopy
  • amorphous
  • thin film
  • crystalline phase
  • zinc
  • annealing
  • tin
  • Indium
  • spin coating