Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Palanisamy, Jagadesh

  • Google
  • 3
  • 8
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2024Development of Models for Mechanical Properties of Engineered Cementitious Composites2citations
  • 2023Optimum usage of waste marble powder to reduce use of cement toward eco-friendly concretecitations
  • 2022Utilization of steel slag in development of sustainable and durable concrete.citations

Places of action

Chart of shared publication
Amirtavarshini, K. S.
1 / 1 shared
Voutetaki, Maristella E.
1 / 1 shared
Thomoglou, Athanasia K.
1 / 2 shared
Isleem, Haytham F.
1 / 9 shared
Karalar, Memduh
1 / 3 shared
Bahrami, Alireza
1 / 41 shared
Roy, Krishanu
1 / 5 shared
Zeybek, Ozer
1 / 1 shared
Chart of publication period
2024
2023
2022

Co-Authors (by relevance)

  • Amirtavarshini, K. S.
  • Voutetaki, Maristella E.
  • Thomoglou, Athanasia K.
  • Isleem, Haytham F.
  • Karalar, Memduh
  • Bahrami, Alireza
  • Roy, Krishanu
  • Zeybek, Ozer
OrganizationsLocationPeople

article

Utilization of steel slag in development of sustainable and durable concrete.

  • Palanisamy, Jagadesh
Abstract

<jats:p>This paper reflects the results of an experimental investigation of the strength, permeability, abrasion, carbonation, and shrinkage characteristics of concrete containing various percentages of steel slag as partial replacement of natural fine aggregates. M 30 Grade concrete was designed as per specific national specifications. Steel slag was used to replace natural sand in the range of 0– 50%. It was observed that the steel slag blended concrete with up to 50% substitution exhibited a comparable compressive and flexural strength when compared to the control specimens. From the Dorry’s abrasion test, it was noted that the specimens could be implemented in heavy-duty floor tiles and even extended to pavement construction. The shrinkage strains, water permeability, and carbonation of steel slag blended concrete were observed to be increasing with increasing replacement amounts of steel slag in the place of natural fine aggregates. The concrete containing steel slag replacing up to 40% of natural fine aggregates can be recommended for all heavy load involving structural applications, and substitution levels beyond 40% could be recommended for non-structural applications, pavements, etc.</jats:p>

Topics
  • strength
  • steel
  • flexural strength
  • permeability