People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Rizal, Muhammad Asyraf Muhammad
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2024Experimental investigation and analytical verification of buckling of functionally graded carbon nanotube-reinforced sandwich beams
- 2023Experimental and Analytical Investigation of Flexural Behavior of Carbon Nanotube Reinforced Textile Based Compositescitations
- 2023The Characteristics of Polymer Concrete Reinforced with Polypropylene Fibres Under Axial and Lateral Compression Loadscitations
- 2022Natural Fiber-Reinforced Polycaprolactone Green and Hybrid Biocomposites for Various Advanced Applicationscitations
- 2022Natural-Fiber-Reinforced Chitosan, Chitosan Blends and Their Nanocomposites for Various Advanced Applicationscitations
- 2021Micro- and Nanocellulose in Polymer Composite Materials: A Review.citations
- 2020Potential Application of Green Composites for Cross Arm Component in Transmission Tower: A Brief Reviewcitations
- 2019Sugar palm (Arenga pinnata [Wurmb.] Merr) starch films containing sugar palm nanofibrillated cellulose as reinforcement: Water barrier propertiescitations
- 2019Fundamentals of creep, testing methods and development of test rig for the full-scale crossarm: A reviewcitations
Places of action
Organizations | Location | People |
---|
article
The Characteristics of Polymer Concrete Reinforced with Polypropylene Fibres Under Axial and Lateral Compression Loads
Abstract
<jats:p>The use of cement is expected to increase over the years as the infrastructure continues to develop, and the needs to repair or rehabilitate an old and deteriorated building are necessary. However, many investigations have been conducted to establish promising polymer concrete applications in the last few decades. Meanwhile, using concrete in the construction industry has led to environmental issues. It is because relying on cement production in concrete will contribute to about 7% of the world’s carbon dioxide emissions. Therefore, polymer concrete was introduced in this study to minimise the use of cement in the industry. This research investigated the influence of different amounts of polypropylene (PP) fibre content on polymer concrete (PC) properties by determining the compressive strength, flexural strength and indirect tensile strength. Furthermore, the results of PC failure characteristics have been discussed. The polymer concrete specimens in this study have been cast into cylinders and prismatic specimens using PVC pipe and plywood formwork to determine the compressive strength, splitting tensile strength and flexural strength. By reinforcing PP fibre in the polymer concrete with a specific percentage of fibre reinforced, the overall strength of the polymer concrete was improved. Based on the compressive, splitting tensile, and flexural test results, it has been hypothesised that the 0.16% PP fibre will considerably improve polymer concrete. Additionally, PP fibre maintains a moisture content of less than 0.5% in the aggregates, resulting in a significant enhancement in the mechanical properties of polymer concrete.</jats:p>