Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Prisecaru, Ilie

  • Google
  • 1
  • 3
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021DEVELOPMENT OF A MODEL FOR THE CRACK INITIATION AND GROWTH SIMULATION OF THE STRUCTURAL MATERIALS UNDER LIQUID METAL EMBRITTLEMENT CONDITIONS2citations

Places of action

Chart of shared publication
Radu, Vasile
1 / 4 shared
Stoica, Livia
1 / 2 shared
Nitu, Alexandru
1 / 3 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Radu, Vasile
  • Stoica, Livia
  • Nitu, Alexandru
OrganizationsLocationPeople

article

DEVELOPMENT OF A MODEL FOR THE CRACK INITIATION AND GROWTH SIMULATION OF THE STRUCTURAL MATERIALS UNDER LIQUID METAL EMBRITTLEMENT CONDITIONS

  • Radu, Vasile
  • Stoica, Livia
  • Prisecaru, Ilie
  • Nitu, Alexandru
Abstract

<jats:p>The paper develops a model based on the finite element analysis of the crack initiation and propagation in the generation IV structural materials due to the liquid metal embrittlement (LME) phenomenon. The stress-strain experimental curves obtained at 400 ºC by testing in the liquid lead and air were converted as the Ramberg - Osgood constitutive equations by proposing a new method to obtain the strain hardening coefficient. To estimate the accuracy of prediction are used the residual and standardised residual in the context of regression analysis. Further, a model based on the Gurson–Tvergaard-Needleman approach (GTN) was set up to evaluate the crack initiation and propagation under the LME conditions. An application of the developed micro-mechanical model that predicts the crack initiation and propagation in the Compact –Tension (CT) specimen due to LME is performed. The model is practical in the structural integrity activities framework of the structural materials that will be used in the ALFRED demonstrator, which will be build-up at RATEN ICN, Romania.</jats:p>

Topics
  • impedance spectroscopy
  • simulation
  • crack
  • finite element analysis