Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Olaseinde, Oluwatoyin A.

  • Google
  • 1
  • 4
  • 1

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Potential of Calcined and Uncalcined Termite Mounds as Pozzolans in Concrete Mix1citations

Places of action

Chart of shared publication
Ikumapayi, Catherine M.
1 / 1 shared
Arum, Chinwuba
1 / 8 shared
Oniwide, Eyitayo O.
1 / 1 shared
Omotayo, Oluwafemi O.
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Ikumapayi, Catherine M.
  • Arum, Chinwuba
  • Oniwide, Eyitayo O.
  • Omotayo, Oluwafemi O.
OrganizationsLocationPeople

article

Potential of Calcined and Uncalcined Termite Mounds as Pozzolans in Concrete Mix

  • Olaseinde, Oluwatoyin A.
  • Ikumapayi, Catherine M.
  • Arum, Chinwuba
  • Oniwide, Eyitayo O.
  • Omotayo, Oluwafemi O.
Abstract

<jats:p>High cost of construction materials especially concrete and steel coupled with environmental unfriendliness of cement pose a great problem in building and construction industries. This makes a case for increased advocacy for affordable and environmentally friendly materials. One of the envisaged solutions to this impending problem is the use of termite’s mound as pozzolan. The potential of utilizing these two forms of termite’s mounds in concrete mix design has been exploited in this research work. The compressive strength as well the elemental composition of the various mixes was employed in conjunction with statistical packages to assess the potentials of utilizing termite mound for construction purposes. The compressive strengths were obtained with the aid of universal testing machine of 1000.0kN capacity, the elemental compositions were obtained using Atomic Absorption Spectrophotometer and models were also generated for predicting the compressive strength of either form of the termite’s mound using statistical package for social sciences. The results showed that the calcined form of termite’s mound has a compressive strength of 12.3 N/ mm2 and 12.6 N/mm2 for 5% and 10% percentage replacement respectively these values are comparable to the control mix compressive strength of 15.7 N/ mm2; This is an indication that calcined termites’ mound has a good potential of being used for concrete works in terms of compressive strength. The uncalcined form of termite’s mound has a compressive strength range of 6.9 N/mm2 to 6.0 N/mm2 for 5% and 10% respectively, this shows that its potential of being used for concrete work is very low and could therefore be recommended for making termite mound blocks. The greater compressive strength obtained in calcined termite mounds can be traced to the changes observed in the chemical composition of the calcined and uncalcined termites’ mounds.</jats:p>

Topics
  • impedance spectroscopy
  • strength
  • steel
  • cement
  • chemical composition