Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Wang, Xiao

  • Google
  • 18
  • 86
  • 325

Technical University of Munich

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (18/18 displayed)

  • 2023Development of high-voltage and high-energy membrane-free nonaqueous lithium-based organic redox flow batteries26citations
  • 2022Discovery of high-entropy oxide electrocatalysts: from thin-film material libraries to particles27citations
  • 2021Redefining architectural effects in 3D printed scaffolds through rational design for optimal bone tissue regeneration38citations
  • 2021Unraveling the formation mechanism of nanoparticles sputtered in ionic liquid14citations
  • 2021Fe2Co2Nb2O9: a magnetoelectric honeycomb antiferromagnet11citations
  • 2021Combining switchable phase‐change materials and phase‐transition materials for thermally regulated smart mid‐infrared modulators32citations
  • 2021Influence of low Bi contents on phase transformation properties of VO<sub>2</sub> studied in a VO<sub>2</sub>:Bi thin film library5citations
  • 2021Fe 2 Co 2 Nb 2 O 9 :A magnetoelectric honeycomb antiferromagnet11citations
  • 2021Coupling Apollo with the CommonRoad Motion Planning Framework7citations
  • 2020Structure Zone Investigation of Multiple Principle Element Alloy Thin Films as Optimization for Nanoindentation Measurements10citations
  • 2020SAQE37citations
  • 2020Influences of Cr content on the phase transformation properties and stress change in V-Cr-O thin-film libraries5citations
  • 2020Structure zone investigation of multiple principle element alloy thin films as optimization for nanoindentation measurementscitations
  • 2020High-throughput characterization of (Fe<sub><i>x</i></sub>Co<sub>1–<i>x</i></sub>)<sub>3</sub>O<sub>4</sub> thin-film composition spreads10citations
  • 2018Application of an A-A′-A-Containing Acceptor Polymer in Sequentially Deposited All-Polymer Solar Cells16citations
  • 2018Influences of W content on the phase transformation properties and the associated stress change in thin film substrate combinations studied by fabrication and characterization of thin film V1-xWxO2 materials libraries10citations
  • 2018Metallic contact between MoS2 and Ni via Au Nanoglue44citations
  • 2015Polymorphism of a polymer precursor: metastable glycolide polymorph recovered via large scale high-pressure experiments22citations

Places of action

Chart of shared publication
Gautam, Rajeev K.
1 / 1 shared
Lashgari, Amir
1 / 4 shared
Jiang, Jianbing
1 / 1 shared
Siwakoti, Rabin
1 / 1 shared
Schuhmann, Wolfgang
1 / 100 shared
Zhang, Jian
1 / 13 shared
Krysiak, Olga
1 / 6 shared
Suhr, Ellen
2 / 5 shared
Ludwig, Alfred
9 / 351 shared
Strotkötter, Valerie
1 / 7 shared
Entezari, Ali
1 / 4 shared
Zreiqat, Hala
1 / 16 shared
Dunstan, Colin R.
1 / 6 shared
Jiang, Xinquan
1 / 2 shared
Meischein, Michael
1 / 17 shared
Mostovoy, Maxim
2 / 3 shared
Fauth, François
2 / 29 shared
Chen, Chien-Te
1 / 2 shared
Tailleur, Elodie
2 / 3 shared
Damay, Françoise
2 / 12 shared
Martin, Christine
2 / 15 shared
Hu, Zhiwei
2 / 7 shared
Maignan, Antoine
2 / 23 shared
Suard, Emmanuelle
2 / 20 shared
Tjeng, Liu, Hao
1 / 1 shared
Lin, Hong-Ji
1 / 2 shared
Lyu, Xinrui
1 / 1 shared
Song, Lixin
1 / 1 shared
Heßler, Andreas
1 / 2 shared
Cao, Yunzhen
1 / 1 shared
Wuttig, Matthias
1 / 39 shared
Taubner, Thomas
1 / 4 shared
Rogalla, Detlef
2 / 26 shared
Kostka, Aleksander
3 / 39 shared
Chen, Chien Te
1 / 1 shared
Tjeng, Liu Hao
1 / 5 shared
Lin, Hong Ji
1 / 1 shared
Rettinger, Anna-Katharina
1 / 1 shared
Waez, Md Tawhid Bin
1 / 1 shared
Althoff, Matthias
1 / 1 shared
Grochla, Dario
1 / 17 shared
Allermann, Timo
2 / 2 shared
Kalchev, Yordan
2 / 4 shared
Banko, Lars
4 / 26 shared
Pfetzing-Micklich, Janine
1 / 17 shared
Savan, Alan
2 / 66 shared
Park, Yongjoo
1 / 1 shared
He, Xi
1 / 1 shared
Rogers, Jennie
1 / 1 shared
Bater, Johes
1 / 1 shared
Salomon, Steffen
1 / 13 shared
Grochla, Darius G.
1 / 1 shared
Pfetzing, Janine
1 / 15 shared
Mehta, Apurva
1 / 15 shared
Sarker, Suchismita
1 / 5 shared
Piotrowiak, Tobias
1 / 7 shared
Jha, Swati
1 / 10 shared
Kopidakis, Nikos
1 / 5 shared
Burn, Paul L.
1 / 20 shared
Fang, Yuan
1 / 5 shared
Raynor, Aaron
1 / 1 shared
Shaw, Paul E.
1 / 4 shared
Jin, Hui
1 / 4 shared
Zeeshan, Faisal
1 / 1 shared
Cao, Wei
1 / 12 shared
Dousse, Jean-Claude
1 / 1 shared
Hoszowska, Joanna
1 / 1 shared
Huttula, Marko
1 / 15 shared
Saukko, Sami
1 / 1 shared
Shi, Xinying
1 / 1 shared
Van Dijken, Sebastiaan
1 / 20 shared
Li, Taohai
1 / 1 shared
Huang, Zhongjia
1 / 1 shared
Zhang, Meng
1 / 12 shared
Pankratov, Vladimir
1 / 2 shared
Alatalo, Matti
1 / 1 shared
Niu, Yuran
1 / 17 shared
Zakharov, Alexei
1 / 19 shared
Posysaev, Sergei
1 / 1 shared
González, Diego López
1 / 1 shared
Miroshnichenko, Olga
1 / 1 shared
Urquhart, Andrew J.
1 / 12 shared
Delori, Amit
1 / 1 shared
Hutchison, Ian B.
1 / 4 shared
Kamenev, Konstantin V.
1 / 3 shared
Oswald, Iain D. H.
1 / 6 shared
Chart of publication period
2023
2022
2021
2020
2018
2015

Co-Authors (by relevance)

  • Gautam, Rajeev K.
  • Lashgari, Amir
  • Jiang, Jianbing
  • Siwakoti, Rabin
  • Schuhmann, Wolfgang
  • Zhang, Jian
  • Krysiak, Olga
  • Suhr, Ellen
  • Ludwig, Alfred
  • Strotkötter, Valerie
  • Entezari, Ali
  • Zreiqat, Hala
  • Dunstan, Colin R.
  • Jiang, Xinquan
  • Meischein, Michael
  • Mostovoy, Maxim
  • Fauth, François
  • Chen, Chien-Te
  • Tailleur, Elodie
  • Damay, Françoise
  • Martin, Christine
  • Hu, Zhiwei
  • Maignan, Antoine
  • Suard, Emmanuelle
  • Tjeng, Liu, Hao
  • Lin, Hong-Ji
  • Lyu, Xinrui
  • Song, Lixin
  • Heßler, Andreas
  • Cao, Yunzhen
  • Wuttig, Matthias
  • Taubner, Thomas
  • Rogalla, Detlef
  • Kostka, Aleksander
  • Chen, Chien Te
  • Tjeng, Liu Hao
  • Lin, Hong Ji
  • Rettinger, Anna-Katharina
  • Waez, Md Tawhid Bin
  • Althoff, Matthias
  • Grochla, Dario
  • Allermann, Timo
  • Kalchev, Yordan
  • Banko, Lars
  • Pfetzing-Micklich, Janine
  • Savan, Alan
  • Park, Yongjoo
  • He, Xi
  • Rogers, Jennie
  • Bater, Johes
  • Salomon, Steffen
  • Grochla, Darius G.
  • Pfetzing, Janine
  • Mehta, Apurva
  • Sarker, Suchismita
  • Piotrowiak, Tobias
  • Jha, Swati
  • Kopidakis, Nikos
  • Burn, Paul L.
  • Fang, Yuan
  • Raynor, Aaron
  • Shaw, Paul E.
  • Jin, Hui
  • Zeeshan, Faisal
  • Cao, Wei
  • Dousse, Jean-Claude
  • Hoszowska, Joanna
  • Huttula, Marko
  • Saukko, Sami
  • Shi, Xinying
  • Van Dijken, Sebastiaan
  • Li, Taohai
  • Huang, Zhongjia
  • Zhang, Meng
  • Pankratov, Vladimir
  • Alatalo, Matti
  • Niu, Yuran
  • Zakharov, Alexei
  • Posysaev, Sergei
  • González, Diego López
  • Miroshnichenko, Olga
  • Urquhart, Andrew J.
  • Delori, Amit
  • Hutchison, Ian B.
  • Kamenev, Konstantin V.
  • Oswald, Iain D. H.
OrganizationsLocationPeople

document

Coupling Apollo with the CommonRoad Motion Planning Framework

  • Rettinger, Anna-Katharina
  • Waez, Md Tawhid Bin
  • Althoff, Matthias
  • Wang, Xiao
Abstract

The development of autonomous vehicles requires extensive testing of software modules. Developing a reliable software platform which allows testing on a real vehicle is yet a challenging task. Therefore, open-source software platforms are becoming more important for researchers in the field of autonomous driving. For example, Baidu provides the open-source autonomous driving platform Apollo which aims to accelerate testing and deployment of autonomous vehicles. However, the complex software structure hinders an easy integration of developed software modules, especially the motion planning module. Moreover, Baidu's Apollo provides only one possibility to test one's own algorithms in simulation, namely to upload the algorithm in Baidu's cloud platform, which is unacceptable for most autonomous driving companies.In contrast, the open-source CommonRoad benchmark suites contain diverse testing scenarios, e.g., highway, urban, dense traffic, and interaction with bicyclists and pedestrians. In addition, CommonRoad provides a motion planning framework in Python which enables rapid planner prototyping, along with additional tools, e.g., efficient collision checker, map format converter, and interface with the traffic simulator SUMO.In this work, we introduce a Python API between the planning module of the Baidu Apollo platform and the CommonRoad software framework. The developed interface aims to bridge the gap between rapid prototyping for safe planning algorithms and real-time test drives. The API transfers perception and map information to the planner and then returns the planned trajectory. The users can either replace the Apollo planner with their own planner or integrate their planner as a fail-safe planner if the planned trajectory by Apollo is unsafe. With our interface, developers can first test their planners in diverse scenarios from the CommonRoad benchmark, and directly on a real vehicle afterwards using the Apollo platform. The latter can be performed without adapting their algorithms to Apollo software structures. Moreover, developers can record their test drives in CommonRoad format for offline analyses. We demonstrate our interface in several scenarios with increasing complexity.

Topics
  • impedance spectroscopy
  • simulation